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ON A NEW METHOD OF SAMPLING THE KLEIN-NISHINA PROBABILITY

DISTRIBUTION FOR ALL INCIDENT PHOTON ENERGIES ABOVE 1 keV

C. J. Everett

E. D. Cashwell

G. D. Turner

ABSTRACT

A Monte Carlo method is given for accurate determination of scattered
photon energy in the distribution required by the Klein-Nishina cross sec-
tion for Compton collisions. The relative error does not exceed 2.2% for

all incident energies above 1 keV.

I. INTRODUCTION
In the Compton scattering of a photon of energy
a(= E/mcz) on a free electron at rest, the Klein-
Nishina cross section requires that the probability
distribution for the ratio x = a'/a (of scattered
to incident photon energy) be given by P(x) =
F(x)/F(E), £z (1L+20) 1< x<1, where F(x) =
f £G)dX, £(x) = x+x T4+ -1, and p =1 +a

-a 1x_l, as shown in LA-4448. Hence, sampling the

-1

distribution P(x) for x = a'/a provides a Monte
Carlo method of obtaining the new energy o' and
scattering cosine 1.

For an incident energy o >(b > 2, Section II
shows that the relative error in replacing P(x) by
the simpler distribution F (x)/F &), F (x) i
(x + x )dx, does not exceed 4/(& - 2). Conse-
quently, with this accuracy, x may be found from
the latter distribution by a standard device in-
volving two random numbers and no further approxi-
mation,

For 0.002 < a < 0qs we set a random number r =
P(x) = F(x)/F(£), and obtain x = F_ (rF(E)) £
Q(rF(£)), where Q(y) is an approximation function
for F_l(y). The function Q(y), defined in Section

III, is cubic on [O,F(xo)] and exponential on

[F(xo),F(C)], X being an a-dependent parameter sub-
dividing the interval (§,1).

Adopting the values of q. and xo(a), specified

in Section IV, insures that t:e relative error in x
does not exceed 2.27% over the entire range 0.002 <
a < o, The approximation function Q(y) represents
a considerable improvement over that proposed be-

fore,l due to the t-dependence of x The tests

0
used for accuracy are described, and a flow diagram

included, in Section IV,

ITI. THE METHOD FOR o > ao
The function f (x) = f(x) = x + x_1 +a
(1-x )(E

-2

-x ) may be written in the form

fo(x) = fl(x) - fz(x), E<x<1 (@8]
where
fo(x) = stix>o
1
£, = el o pp-atxt-oniro L@

£,(0) < 20 %t < 207t

f (x) -~ f (x) > £ (x) -
(1 - Za )f (x), we have the inequality

Since 0 < £ (x) ~- £ (X) =
3 (x) hence also f (x)
2a f (x)

il

0< fl(x) - fo(x) < 2f0(x)/(a -2, a>2. (3



For the integrals Fi(x) = {: fi(x)dx therefore,
0 < Fi(x) - Fylx) < () /(@ -2, E<x <1 (&
in particular

0 < Fl - Fo < ZFO/(a -2) (5)

where Fi = Fi(g).
Consequently, the relative error €(x) in re-
placing Fo(x)/Fo by the simpler distribution Fl(x)/

()
FO

[Fo|Fl(x) - Fo(x)l + Fo(x)|Fl - Fol]/FlFo(x)
[p (-—2—> F (%) + F (%) (—2—)17] F.F.(x)
o\a-2/"0 0 a-2/0 10

F
I i) 4
T oa-2 (Fl) ‘a-2 ° (6

Similarly, one may show
£,(x)
0

for the relative error in the corresponding densi-

Fl satisfies

Fl(x) ) Fo(x)

F Fo

e(x) =

A

A

fl(x) ) fo(x)

B o

e'(x) =

2
[ B
N

ties at each point. Note that e(x) < 4/(a0 - 2)
for all a > %gs and €(x) + 0 uniformly as o + =,

Since the function Fl(x) has an inverse diffi-
cult to fit, we resort to the following well-known
strategy. The variéble x has distribution Fl(x)/Fl
iff it has density fl(x)/Fl. We write fl(x) =

al(x) + az(x), where al(x) Z x ~ and az(x) = x.
-1 -
Setting Ai(x) = ﬁx ai(x)dx and Ai Ai(E) this x

density may be expressed in the form

£,00

R
F Fl Al Fl A2

1

Hence, choosing the auxiliary density ai(x)/Ai with
probability Ai/Fl’ and x in the corresponding dis-
tribution Ai(x)/Ai’ yields x with the required den-
sity fl(x)/Fl.

Setting a random number r = Ai(x)/Ai in the

usual way gives

1/2

x = exp[r 1n &] or x= [1-1x(1- 52)]

in the two cases. For the probabilities Ai/Fl one
requires the values A, = In E_l, A2 = (1/2) (1 - 52),

and F1 = Al + A2.

The inversion involved in the square

1

Note:

root value of x above may be obviated, i1f desired,

by setting x = § + max [(1 - E)r, (1 + §)s - 2§],

where r, s are independent random numbers.

III. APPROXIMATION OF F 1(x), 0.002 < o < o

The function f(x) = x + x_l + a_z(l - x_l)
& - x—l), £ < x € 1, has the integral F(x) = ﬂf
£G)dx = (DA - ¥ +a 2 i -0 + - D)
+ (1 - 2a-l - 2a_2) 1In(1l/x). As before,l we define

-1

G = F(E) = gﬁﬁﬁ_i_l% + 4ot
(20 + 1)
-1 -2
+ (1 ~-20 " -2¢ ) In(20 + 1) . n
For an arbitrary point X of (§,1), we find that
— -2 -2
F = F(xo) Kl + Kza + K3a ,
£ = f(x) =N, +N ol 4+ N2 (8)
- 0 1 2 3
where
1 2 -1
Kl = 2(l - xo) - 1n Xy N1 = X4 + X,
K.=2(Inx +(L=-x)) N, =2(1-xD5
2 (0] 0 2 0
-1 B -1,2
K3 = x5 = X 4+ 2 1n Xy N3 = (1 - X, ) .

If, on the interval [g,xol, we assume the ap-
proximation1 f(x) = Cx_l, where C = (G -~ F)/ln(xO/EL

we shall have there also

X

(6]
F(x) -f f(x)dx + F(xo)

X

<
]

13

L(x) =F+ C 1n (xo/x)

with F(§) = L(§) and F(xo) = L(xo). This leads to
the approximation x = F-l(y) = Q(y) = L_l(y), where




Q(y)-xoexp[-c:gln(xolé)] , F<y<g¢ ,

which is exact at the end points.

In practice therefore, for a random number r
such that J = (F/G) € r € 1, we find from r = F(x)/G
the approximation x = F-l(rG) = Q(rG) = x
[ - A(rt - J))] where A = 1n(x0/E)/(1 - J).

On the interval 0 € y < F, we assume a cubic

o €XP

approximation F_l(y) > Q(y) = a, + a,y + a2y2 +
a3y3, and demand that Q and Q' be exact at the end
points. Since F(1l) =0, F'(1) = - f(1) = -2, and
F(xo) = F, F’(xo) = —f(xo) = -f, this requires that
Q(0) = 1,Q'(0) = -1/2, and Q(F) = x5, Q"(F) = - 1/f.
It follows that the cubic Q(y) has the form Q(y) =
1 + a(y/F) + b(y/F)2 + c(y/F)3, 0 € y € F where a =
- F/2, b = F + F/f - 3(1 - xo), ¢ =~ F/2 - F/f +
2(1 - xo). Hence for a random number on 0 €S r < J
= F/G, we take x = F 1(rG) = Q(rG) = 1 + a(r/J) +
b(r/J)2 + c(r/J)3. The essential features of F(x)
are shown schematically in the figure below, and
further details may be found in the earlier reportl,

= 0.3.

which was based on the fixed Xq
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IV. ACCURACY TESTS AND FLOW DIAGRAM

We adopt the value o, = 202 insuring a steadi-

(¢]
ly decreasing maximal relative error < 4/(&0 -2) =
0.02 for all a = % (= 101 MeV), in the sense of
Section II.

The general method used in testing the accuracy
of the Section IIT approximation x' = Q(y) = x =
-1
F “(y) for a particular o on [0.002, 202] and i
on [£,1] consisted in computing the exact value of
F(xhi) = Vg0 the corresponding approximation

= ! o =
Q(yhi) Xog = X0 and the relative error €

) hi
(rpy = %ng) %y

The a-interval [0.002, 2.002] was tested in
this way for the 101 energies o - 0.002, 0.022,---,
2.002, using the o-dependent division point Xy = £
+ ¢(1 - &) for each of the values ¢ = 0.15, 0.17,
0.20, 0.25, the interval [E,xo] being subdivided in-
to 6 equal intervals, and [xo,l] into 7, by a se-
quence of test points x In the same way, the a-
h = 2, 2.5,+**, 52
for ¢ = 0.15, 0.20, 0,25 and [52,202] at ah = 52,
53.5,***, 202 for ¢ = 0,25. The results showed the

hi®
interval [2,52] was tested at a

maximal relative error Iel to be minimal for the
correlated a-ranges and ¢ values tabulated below.
The accuracy could be still further improved, but

the present bounds are sufficiently good for our

purposes.
TABLE I

0.002 €& < 0.962 ¢ = 0.25 le] = 0.0211
0.962 < a < 1,642 ¢ = 0.20 [e] = 0.0218
1.642 < @ < 2.002 ¢ = 0.17 [e] = 0.0218
2.002 €0 < 10 ¢ = 0.15 [e] = 0.0213
10 <a< 52 ¢ = 0.25 |e] = 0.0177
52 < a < 202 ¢ = 0.25 le] = 0.0194

These choices of parameters may be incorporated in-
to the following schematic flow diagram for Monte
Carlo determination of x, for a given incident en-
ergy o = 0.002,

FLOW DIAGRAM

Determination of x in Distribution F(x)/F(&).

(ao = 202)
1. n=1+ 2a
2. £=1/n
3. N=1nn
4, o > Oy * (5),a < %y * (11)
2
5. T=1-¢§&
6. F. =N+ (1/2)T

1
7. Generate r, r'

8. Flr' <N+ (9), Flr' = N =+ (10)

9. x = + exp(-Nr) EXIT

10. x = V1 - rT EXIT (See Note, Part II)
u. g =1/a

12. Set ¢ = ¢(a). (See Table I)




13.
14.
15.
16.
17.
18.

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29,
30.
31.
32.

33.

X, = E+ ¢ (1-6)
M= In x

0 2
Kl = (1/2)(1 - xo) -M
K2 - ZS? + 1 - xo)
K3 =Xy - X + 2M

F = Kl + S(K2 + BK3)

G = 2aga42~12 + 48 + [1 - 2B(L + B)IN
n

J = F/G

Generate r

r<J+ (23), r >J + (32)
R=1r/J

Nl - x0 + xo_1
N2 = 2(1 - x57)

N, = (1 - xal)2
Nl + B(N2 + BN
- F/2

F+ F/f - 3(1 - xo)

- F/2 - F/f + 2Q1 - xo)

1 + Rf{a + R(b + Rc)] EXIT
M+ N
1-J

X = x, exp - A (xr - J) EXIT

1

)

N o @ M
] ] ]

=]
]

CM/ml: 311(50)

1.

REFERENCES

C. J. Everett, E. D. Cashwell, Los Alamos Report
LA-4448 (June 1970), "Approximation for the In-
verse of the Klein-Nishina Probability Distri-
bution.

C. J. Everett, E. D, Cashwell, .G. D. Turner,
""A Method of Sampling Certain Probability Den-
sities Without Inversion of the Distribution
Functions,"” (in preparation).



