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ON A NEW NETHOD OF SAMPLING THE KLEIN-NISHINA PROBABILITY

DISTRIBWION FOR ALL INCIDENT PHOTON ENERGIES ABOVE 1 keV

1. INTRODUCTION

In the Comuton

by

C. J. Everett

E. D. Cashwell

G. D. Turner

ABSTRACT

A Monte Carlo method is given for accurate determination of scattered
photon energy in the distribution required by the Klein–Nishina cross sec-
tion for Compton collisions. The relative error does not exceed 2.2% for
all incident energies above 1 keV.

scattering of a photon of energy
z

C$-(=E/me ) on a free eleccron at rest, the Klein-

Nishina cross section requires that the probability

distribution for the ratio x = a’/a (of scattered

to incident photon energy) be given by P(x) =

F(x)/F(~), & ~ (1 + 2a)-1~ x< 1, where F(X) =

f: f(x)dx, f(X) = X + X-l + P* - l,sndp=l+a
-1

_ a-lx-l
, as shown in LA-4448. Hence, sampling the

distribution P(x) for x = a’/a provides a Monte

Carlo method of obtaining the new energy a’ and

scattering cosine p,

For an incident energy a >
%

> 2, Section 11

shows that the relstive error in replacing P(x) by

the simpler distribution F1(x)/F1(~), Fl(x) : f;

(x+ x-l)dx, does not exceed 4/(ao - 2). Conse-

quently, with this accuracy, x may be found from

the latter distribution by a standard device in-

volving two random numbers and no further approxi-

mation,

For 0.002 <a<ao, we set a random number r =

P(x) = F(x)/F(c), and obtain x = F-l(rF(~)) ~

Q(rN:)), where Q(Y) is an approximation function

for F-l(Y). The function Q(y), defined in

III, is cubic on [O,F(XO)] and exponential

Sect ion

on

[F(XO),F(Q], X. being an a-dependent parameter sub-

dividing the interval (&,l).

Adopting the values of a. and xo(a), specified

in Section IV, insures that the relative error in x

does not exceed 2.2% over the entire range O,OO2 ~

a<-. The approximation function Q(y) represents

a considerable improvement over that proposed be-

fore,
1

due to the a-dependence of Xo. The tests

used for accuracy are described, and a flow diagram

included, in Section IV,

11.

(1 -

THE METHOD FOR a > a.
-1 -2

The function fo(x) S f(x) = x + x + a

X-l)(t-l -X-l) may be~itten in the fo~

fo(x) = fl(x) - f2(x), ~<x<l (1)

where

fl(x) = x
-1

+X>o

-1 -1
f2(x) = a (X - 1)[2 - a-l(x-l - 1)] >0 . (2)

Since O $ fl(x) - fo(x) = f2(x) < 2a
-lx-l < *a-l

fl(x), hence aleo fo(x) = fl(x) - f2(x) > f,(x) -

2a-Lfl(x) = (1 - 2a-l)fl(x), we have

O ~ fl(x) - fo(x) < 2fo(x) /(a - 2) ,

J.

the inequality

a>2. (3)

1



For the integrals Fi(x) = ~~ fi(x)dx therefore,

O < F1(x) - FO(X) < 2FO(X) /(IX- 2) , tj<x <l(4)

in particular

O<F1- F. < 2Fo/(a - 2) (5)

where Fi ~ F1(C).

Consequently, the relative error E(X) in re-

placing FO(x)/FO by the simpler distribution F1(x)/

F1 satisfies

/(-)F. (X)‘o

+ FO(X)IF1 -
/

FOI] FIFO(X)~ [FOIF1(X) - FO(X)

< [Fo(&) FO(X) +Fo~xJ (&) Fo]/F,Fo(x)

(6)

Similarly, one may show

fl (x) fo(x)

1/( )

f. (x)
4

E’(x) z —-— — <—

‘1 ‘o ‘o
a-2

for the relative error in the corresponding densi-

ties at each point. Note that E(X) < 4/(ao - 2)

for all a > &o, and s(x) + O uniformly as a + CO.

Since the function Fl(x) has an inverse diffi-

cult to fit, we resort to the following well-known

strategy. The vari~ble x has distribution F1(x)/F1

iff it has density fl(x)/F1. We write fl(x) =
-1

al(x) + a2(x), where al(x) = x and a2(x) = x.

Setting Ai(x) = ~~ ai(x)dx and Ai = Ai(5) this x

density may be expressed in the form

-=(!l)-+p)y ,

Hence, choosing the auxiliary density ai(x)/Ai with

probability Ai/F1, and x in the corresponding dis-

tribution Ai(x)/Ai, yields x with the required den-

sity fl(x)/F .
1

Setting a random number r = Ai(x)/Ai in the

usual way gives

x = exp[r in ~]

in the two cases.

or X=[l-r(l-

For the probabilities Ai/Fl one

requires the values Al = in C-l, A2 = (1/2)(1 - C2),

(8)

and F1 = Al +A2.

Note: The inversion involved in the square

root value of x above may be obviated, if desired,

by setting x = C+max [(1 - E)r, (1+ ~)s - 2~],
2

where r, s are independent random numbers.

III . APPROXIMATION OF F-l(x), 0.002 ~ a ~ a.

The function f(x) = x + x
-1

+ a-z(l - X-l)

(C-l -X-l ), ~GxS 1, has the integral F(x) = f:

f(x)dx = (1/2)(1 - X2) +a-2[E-1(1 - X) + (x-l - U]
-1 - 2ci-2) ln(l/x).

1
+(1-2a As before, we define

G ~ F(C) = ~~++1~2 + 4a-1

-1
+(1-2a - 2ci-2) ln(2a + 1) . (7)

For an arbitrary point X. of (L,l), we find that

-2 -2
F ~ F(xO) = K1 + K2a + K3a ,

f = f(xo) = N1 + N2a
-1

+ N3a
-2

where

K1 =*(1 - X;) - in X. N1 = X. + X;l

K2 = 2(ln X. + (1 - Xo)) N2 = 2(1 - X;l)

K3 = X;l - X. +21nxo N3 = (1 - X;1)2 .

If, on the interval [~,xo], we assume the ap-

proximation f(x) ~CX-l, where C= (G- F)/ln(xo/E),

we shall have there also

1

‘o
y = F(x) = f(x)dx + F(xO)

x

~ L(x) ~ F + C in (xO/x)

with F(c) = L(c) and F(xo) = L(xo). This leads to

-l(y) ~ Q(y) ~ L-l(Y)s where
the approximation x = F

v

.

2



[ 1Q(Y) =X. exp -~ln (Xo/E) , F~yGG ,

which is exact at the end points.

In practice therefore, for a random number r

such that J S (F/G) s r = 1, we find from r = F(x)/G

the approximation x = F-l(rG) ~ Q(rG) = XO exp

[ - A(r - J)] where A = ln(xO/~)/(l - J).

On the interval O G y G F, we assume a cubic

app;oximatiOn F-l(Y) ‘Q(Y) = a. + aly + a2y2 +

a3y , and demand that Q and Q’ be exact at the end

points. Since F(1) = O, F’(1) = - f(1) = -2, and

F(xo) = F, F’(xo) = -f(xo) = -f, this requirea that

Q(0) = I,Q’(O) = -1/2, and Q(F) = ‘0$ Q’(F) = - I/f.

It follows that the cubic Q(y) has the form Q(y) =

1+ a(y/F) +b(y/F)2 + c(y/F)3, OGyGFwherea=

-F/2,b=F+F/f-3(1 -xo),c=-F/2-F/f+

2(1 - Xo). Hence for a random number on O ~ r G J

= F/G, we take x = F-l(rG) ~ Q(rG) = 1 + a(r/J) +

b(r/J)2 + c(r/J)3. The essential features of F(x)

are shown schematically in the figure below, and

further details msy be found in the earlier reportl,

which was based on the fixed x
o

= 0.3.

F(x)
I

l\
G-

1
I
I
I
I

F –+––– -f(xO)= -f

! I
I

1! i

\ \-f(1) = -2

IV. ACCURACY TESTS AWD FLOW DIAGRAM

We “adopt the value a. = 202 insuring a steadi-

ly decreasing maximal relative error< 4/(ao - 2) =

0.02 fOr all a> a. (~ 101 MeV), in the sen;e of

Section 11.

The general method used in testing the accuracy

of the Section III approximation x! = Q(y) = x =

F-l(Y) fOr a part~cular ~ on [0.002, 202] and ~i

on [~,1] consisted in computing the exact value of

N~i) = Yhi, the corresponding approximation

Q(Yhi) = ~i ‘Xhi, and the relative error E
hi =

(~i- yi)/~i.

The a-interval [0.002, 2.002] was teated in

this way for the 101 energies
%

- 0.002, 0.022, ...,

2.002, using the a-dependent division point X. = t

+ $(1 - ~) for each of the valuea $ = 0.15, 0.17,

0.20, 0.25, the interval [L,XO] being subdivided in-

to 6 equal intervals, and [Xo,ll Into 7S by a se-

quence of test points Xhi. In the same way, the a-

interval [2,52] was tested at ah = 2, 2.5,..”, 52

for @ = 0.15, 0.20, 0.25 and [52,202] at ah = 52,

53.5,.””, 202 for $ = 0.25. The results showed the

maximal relative error IcI to be minimal for the

correlated a-ranges and @ valuea tabulated below.

The accuracy could be still further improved, but

the present bounds are sufficiently good for our

purposea.

TAELE I

0.002 <a < 0.962 $ = 0.25 IE{ =0.0211

0.962 <a < 1.642 $ = 0.20 IcI =0.0218

l,642Ga< 2.002 $ = 0.17 ICI =0.0218

2.002 <a < 10 $ = 0.15 IcI =0.0213

10 <a< 52 @ = 0.25 [cl =0,.0177

52 Ga <202 $ = 0.25 IEI =0.0194

These choices of parameters may

to the following schematic flow

Carlo determination of x, for a

ergy a > 0.002.

Determination

FLOW DIAGRAM

be incorporated in-

diagram for Monte

given incident en-

of x in Distribution F(x)/F(~).

(a. ~ 202)

1. n=l+2a

2. E=llll

3. N=lnq

4.

5.

6.

7,

8.

9.

10.

L1.

12.

a>ao+(5),a~ao+ (11)

T=l-~2

F1 = N+ (1/2)T

Generate r, r’

Fir’ < N+ (9), Fir’ > N+ (10)

x = + exp(-Nr) EXIT

X== ExIT(See Note, Part II)

@ = I/a

Set @ = $(a). (See Table 1)



13. XO=E-I-$( l-C)

14. M=lnxO

15. K1 = (1/2)(1 - X;) -

160 K2=2(M+1-XO)

17. K3 = X;l - XO+2M

180 F = K1 + 13(K2 + L3K3)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

M

~ = Za(a + 1)

n2
+4f3+ [1- 213(l+13)1N

J = F/G

Generate r

r< J+(23), r> J+ (32)

R = r/J

N1 = X. + X;l

N2 = 2(1 - X:l)

N3 = (1 - X;1)2

f = Nl+ f3(N2+ f3N3)

a=-F12

b=Fi-F/f- 3(1 - Xo)

c=- F12 - Flf + 2(1 - Xo)

~= l+ R[a+R(b+Rc)] EXIT

A
M+N

‘=

x=x o exp - A (r - J) EXIT
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