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PREFACE

An attempt is made to present the principles of special relativity,
insofar as it applies to systems of particles, in a form which clarifies
their possible transmutations, and makes explicit the computational methods
of dealing with such phenomena, from the viewpoint of Monte Carlo particle
transport. Some mathematical side-lights are included which are logically
valid; however, any resemblance to physics is purely coincidental.

We are greatly indebted to Leah Peterson for typing the long and diffi-
cult manuscript, and to Shirley Cashwell for providing the many excellent

figures.
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ABSTRACT

The basic principles of special relativity involved in Monte Carlo
transport problems are developed with emphasis on the possible trans-
mutations of particles, and on computational methods. Charged particle
ballistics and polarized scattering are included, as well as a discussion

of colliding beams.
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Chapter I

PARTICLE DYNAMICS

1. The parameters of a particle. In an inertial frame ¥ of events

(R,t), a definite type of particle is assigned a constant proper mass
m > 0. For a material particle (electron, meson, nucleon, . . Jm is
positive, being the rest mass, or mass of the particle at rest in Z,
whereas an immaterial particle (photon, neutrino, . . .) has a proper
mass m = 0.
A particle moving on a trajectory (R(t),t) has velocity V = ﬁ,

and speed v = |V| > 0, its direction ¥ (if v>0) being determined by
the relation V = v ¥, where |¥| = 1. If ds/dt > 0 for the arc length s,
it follows from the identity

dR ds

VY:V:d—S-E

that v = ds/dt and ¥ = dR/ds, the direction of the trajectory tangent.
If m = 0, the speed v has the constant value c = 3 x 10lo cm/sec,
whereas 0 < v < ¢ if m > 0. It is customary to write B = v/c <1, and also,

for m > 0,
2.4
Y =1/(1-89%21
Some relations frequently used are
-2.% 2 .5
Yy +8° =1, B=(1-y )5 YB= (v-1)7, v(1-B)y(1+B) =1 1)

At time t, a particle has a positive mass M. For a material particle,

M is speed dependent, being determined by




M=my >m>0 S (2)

However, the mass M of an immaterial particle is an independent parameter,

which may have any positive value.

The momentum of a particle is the vector
P =M

[P] = Mv. Since V = v¥, we infer that P = Mv¥ = p¥, so

of magnitude p
that P also determines the direction VY.

Particles of both kinds, with m > 0, may be treated in a uniform way

by virtue of the "validity condition:"

A number M and vector P are possible values of the mass and momentum

of a particle of proper mass m > 0 iff they satisfy the conditions

M>0 P2=cioitond) (3)

(The non-relativistic analogue is P2 = 2mk.)

The energy of a particle is defined as E = Mcz, its proper energy

("'rest energy'" if m>0) being e = mc2 > 0. The excess k = E-e of E over e

is called the kinetic energy of the particle. Note that k = E = ¢p if m = 0,

while k = e(y-1) Z_%—Mvz Z_%—mvz for a material particle. In fact, %—Mv2 =
2, and %—YBZ <Y -1 is easily verified from (1).

1 ,2 1

7B =7 erB
The "mechanical' parameters (P,M,m) subject to (3) determine all other

parameters of a point particle. So do its energy parameters (cP,E,e), which

are more convenient in computation. The latter satisfy the important relations
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EB = cp = (E2-e2)?  (m20) | @)
Y = E/e, B = cp/E, YB = cp/e, Y -1 = k/e (m>0)

In Monte Carlo practice, one may employ the parameters (¥,k,e) for

which we have (for e>0)

-2 L
y =1+ (k/e), B=(1-Y 2% E=ey, cp=EB, cP

cp ¥, v=cB (5)

The net force acting on a particle is by definition F ﬁ, a "free"

particle being one with F = 0, hence with P, M (cf. (3)), and V = M 1P constant
on its linear trajectory R(t) = Ro + Vot.
Differentiating in (3) shows that (MV)-ﬁ = PP = CZMM, and hence we have

the power input

]
e
.
<
n
Q
=
H
[Tie
i
e

FeV (6)

Moreover, if F =

grad ¢ (R}, we also have

FeV

(- grad ¢)-V = - §

and the combined relations

wie
1}

FeV = -~

-

showing that k + ¢ is constant on the trajectory.
The work done by a force F on a particle, between points 0 and 1 of

its resulting path, is given by




1

1
W =d/‘p-w ds =6/.F°V dt  (ds/dt>0)

From above, we see that

For example, a positive electron, of charge q esu, in an electro-

static field

F = - grad ¢ (dyne/esu = volt/cm), due to a potential

®(R) (volt = erg/esu), is subject to a force

F = qF = - grad (q¢) dyne

N

If the difference in (electrical) potential ¢ between points 0, 1 of its

(7

resulting trajectory is 1 Volt (= 108/c esu volt), the corresponding k.e.

increase is

12
er

ki-k, = ab-q¢, = q(10%/¢c) = 1.6022 x 10" 2erg

a unit of energy called the electron-Volt (eV).

1 keV = 103eV 1 MeV = 106eV 1 BeV = 1 GeV = 109eV.

Thus the electron rest energy e = mc2 is .51100 MeV

(See the TABLES for physical constants.)
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Every particle is assigned a frequency v = E/h, and (if v>0) a

wavelength A = h/p, where h is Planck's constant. Clearly we have
Av = E/fp =c/B>c
with equality iff8 = 1, m = 0. Thus A is the ordinary wavelength (c/Vv)
for a photon, and the 'de Broglie' wavelength h/Mv for a material particle.
The equation
A(cp) = he
yields the simple numerical relation

A(fermi) x cp(BeV) = 1.2399 (8)

where cp = E2—e2 (=E when m=0).

Thus a 1.24 BeV (k.e.) electron has wavelength = 1 fermi = 10-13 cm.

The Compton wave length AC of a material particle of rest energy e > 0O
is an intrinsic parameter, defined as the wavelength of a photon having energy

equal to the rest energy of the particle. Such a photon has the wavelength

KC = ¢/v = he/hv = he/e = h/me.

Applying (8) to the photon shows that

Kc(fermi) X e (BeV) = 1.2399

numerically. From the above value of e for the electron one finds its
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Compton wavelength to be AC = .02426 & The relation Ace = hc = Acp shows that
AG/A = cp/e = YB = (Yz-l)“, and therefore
> > >
AC A asYs V2 or as B z 1/v/2 .

Thus the wavelength of any material particle becomes less than its Compton

wavelength A, when vy = 1 + k/e cxceeds /El while its kinetic energy k becomes

C

greater than its rest energy e when Y exceeds 2. For an electron the critical
values of k are 212 keV and .511 MeV respectively.
Note 1. It is sometimes convenient to replace the time t by the distance

parameter T = ct, with the corresponding dimensionless '"velocity"
V = drR/dT = V/c = (Bx,By,nH) = Bey (9)

in terms of which we have

cP = EV (10)

Example 1. A particle of rest energy e = 500 MeV and k.e. k = 800 MeV has:

y = 13/5, B = 12/13, E = 1300 MeV, cp = 1200 MeV
,~10
A=1,031f < Ar = 2.48 f, v = 2.77 x 107" cm/sec, and
-14
p =6.41 x 10 gm cm/sec. Note that

-y

Av = 3,25 x 1010 >c, k =.800 ><%NW” = %—EBZ = 554 > %—mv2 = %—eB2 = 213 MeV.



2. A relativistic gas. Consider a homogeneous isotropic gas of n

particles/cms, each of proper mass m (>0), of which the fraction f(k)dk
have k.e. on (k,k+dk), 0 < k < ®», The numerical flux of particles, in
the indicated ranges of k, and spherical coordinates (6,¢) for direction,

is seen from Fig. 1 to be

N(k,6,¢9)dk dO d¢ =

n(AA-vAt cos 8) £(k)dk((sin 0 d6 d¢)/4m)/MAAt =

(n/4m) vE(k)dk sin © cos 6 d8 d$ per cm2 sec
where v = v(k) is the speed as a function of k.e.

Successive integrations, on 0 < ¢ < 27, 0 < 8 < 7/2, and 0 < k < », show the

various resulting (one-way) fluxes to be

N(k,0)dk d8 = (n/2)ve(k)dk sin B cos 6 d8 (1)
N(k)dk = (n/4)vE(k)dk (2)
N = (n/4)v per cm? sec (3)

while the k.e. flux is

¢ =JkN(k)dk = (n/Hkv erg/cm2 sec (4)

Regarding the pressure P at a '"wall'" as the total change of normal

component of momentum per sec per cm2 we find from (1)




/ vAt cos@

Fig. 1.

Flux of a Gas




o /2
P = J/' (2p cos B)N(k,8)dk d8 = (n/3}pv (5)
o]

in dyne/cm2 = erg/cms, with p = p(k).

The k.e. per cm3 on (k,k+dk) is

K(k)dk = kenf(k)dk (6)

with the total energy density

[eo]

K =fl((k)dk = nk erg/cm3 (7)

For a gas ofophotons (m=0, v=c, k= E =cp= hv) at "temperature"
© = kT, the function K(k) in (6) is the '"Planck density'" (0<k<®)
K(k)dk = 8m(he) > k> dak/(e¥/%-1)  erg/en’ (8)
With this as a starting point, we infer from (6) that
nf(k)dk = 8m(he) > k2 dk/ (eX0-1) (9)
and upon integration (Note 1) find that

n = 16T Z;(B)(hc)-3 03 photons/cm3 1 (10)

is the (temperature dependent!) numerical density. Hence from (9), the

probability of k on (k,k+dk) is

Fdk = (20(3)0%) 7! K2ak/ (eX/°-1) (11)
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On the other hand, integration of (8) shows the total energy density to be
K = (8/15)7° (he) ™ 20% = nk (12)
so from (10) and (12) the average photon energy is
kK = K/n = 1°0/30 £(3) erg (13)

Evaluation of (3), (4), (5) is now trivial, since v(k) = ¢, and pv = cp = k.

Thus, the numerical flux is
-3 .3 2
N = (n/4)c = 47 (3) c(hc) ~ O photons/cm” sec (19

carrying an energy

¢ = (n/a)ck = (c/8)K = (2/15)7°c (he) ~30% = or? (15)

2 . .
erg/cm” sec, where 0 is the "Stefan-Boltzmann" constant. Finally, we have

for the radiation pressure
P = (/3)k = K/3 erg/cm3 (16)

where K is given by (12).

Note 1. The values given for n and K may be verified from the formula

[vo]

1(s) =f =1 ax/(e¥-1) = T(s)zs), s > 1, (17)
(o]
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©

where T'(s) E~/ﬁ xs-l e ™ dx {(s>0) is the T'-function, with values I'(s) = (s-1)!,
()

(o0}

s =1,2,3,..., (0120), and (s) = & "% (s>1) is the Riemann Z-function.

m=1 m

ﬂ4/90. The formula (17) results from term-

n

One knows Z(3) = 1.2021 and z(4)

wise integration using the geometric series

- - o -mx
e X/ (1-e%) = Zm=1 e , x>0.

Note 2. For a relativistic material gas, the functions v = v(k), p = p(k)

may be obtained explicitly from the relations

1+ k/e B

<
l

2.k
(1-y 9)*
v = cf cp = YBe

Note 3. For comparison, we list below the main results for the Planck photon gas
and the non-relativistic material Maxwell gas. The averages for the latter are
easily derived from the Maxwell energy distribution, the relations

1
v = (2k/m)6, pv = 2k, and the properties of the I'-function (Table V).
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Planck Maxwell
n = 16m Z;(I’>)(hc)—3 93, m=0 n, m > 0 given constants
£k = (22(3)05) T &2 dk/ (e O-1) £(k) dk =/3-e'3/2 (12 K0 g
T

1
¢

v = C \'

2¢2/mm)% ©

R = 7 0/30 £(3) R =13/20
W = ok W = 4c2/mM? 6%/2
pv = k PV = 2k = 30
K = nk = (8/15) 7 (he) > o K = nk = >0
S . Sy % gt
N = FV=gn N = 7V = (n/2)(2/mm) * ©
2 3 )
=PV - -M5v-no=2
P= 3 PV = K/3 P = 7 PV =10 = K

Note 4, The Maxwell density f (k) of Note 3 may be deduced from two
hypotheses concerning the velocity distribution, and the perfect gas equation
of state PV = RT. Let P(vx,vy,vz) be the probability density for the velocity

V = (vx,vy,vz). From the isotropy assumption
I. PvsVysV,) = FO)s v = [V
follows the identity of the marginal densities

P, =p, (W) =p (W) = p(w).
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From this and the independence hypothesis

I1. P(vy»vyv,) = P (V) p (V) °p, (V)
we obtain the equations

P(v,)-p(v,)-P(v,) = F(¥)

2 _ .2
=V
Z

v2 + v2 + v
X y
For an arbitrary curve V = V(s), through the point (vx,vy,vz), and lying

on the sphere V = v, we have then

PrvOvy PV V' PV v,

IO I (7 R T 75 B

1}
o

v v+ v v+ v v'Z=
X X y 'y zZ z

It follows that

(p' (v, )/P(v)> p'(vy)/p(vy), p'(v,)/p(v,) = (vx,vy,vz)°K
where K is a constant. Hence

p'W)/p(W) = -w/o, o > 0 constant

and
2 2
p(W) = Ae_w /20

1
-

is determined from

where A= (2w02)
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1 =fp(w)dw .

Hence P(vx,vy,vz)dvxdvydvz

2 2
= a3V /2% dv,dv dv_ = Q(v,0,0)dvdody

where the latter is the density for speed and direction in spherical

coordinates. This yields

2,, 2

Q(v,8,6)dvdedd = ASe™ /29 (v2 sin 6)dodedv

whence
3.2 —v?/20°

q(v)dv = 41A v e dv
gives the marginal speed density. From f(k)dk = q(v)dv, where k = %
then follows

2 -3/2 1/2 -k/o‘m

f(k)dk = (2//7)(c“m)” k e dk.
The mean of pv = mv2 = 2k is therefore

—_ 2

pv = kaf(k)dk= 3om .

o

Thisserves to evaluate the constant 02 by appeal to the equation PV =

NOKT = NOO . or
P =n0b .

For, we know from (5) that

mv




P=@ v

and hence

no=P=2pv- (%J(Sozm) = n(o’m)

Thus sz = 0, and we therefore have

£)dk = (2/v0 32 K1/2 ¢ KO g
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3. Charged particle ballistics. In this section, we derive the tra-

jectory of a non-radiating charged particle in the presence of constant
uniform fields of the following types: (I) electrostatic £, (II) magnetic
H, (III) E and H superimposed in orientations which are (A) parallel, (B)
perpendicular (with |[H| % |E]), (C) arbitrary non-parallel and non-perpen-
dicular.

The independent variable t (sec) will be replaced by the distance

parameter T = ct, and the velocity V by the dimensionless vector
V = dr/dt = V/c = (By»B,.8,) = BY, (1)

with |V| = B. We also transform T to the variable A via the monotone in-

creasing function

T
A= A(T) =~/~dT/Y(T) (2)
[o]

which implies that dt/dA = y > 1. Adopting the component notation

dR/dX = (X,Y,Z), we then have

= = ey, 3)
and hence

X+ Y + 25 =y B =y -1 (4)

These conventions enable us to write the momentum as

T

P = my(dR/dt) = 2-9%

%{dR/dx) (5)

ol A,
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and its time derivative

bre =@ =t D (6)

The force law P = F then assumes the form

a%rzda? = e yF (7)

Thus the equations of motion may be written as

!
(]

& (Y,2) = ety (8)

where

(X,Y,2) (9

d
& y,2)

The basic relations for the cgs units employed are indicated by the

schematic equations

QE = F = Q(V x H) (10)

Q charge (20) in esu (Q = + nq)
E electrostatic field (dyne/esu = volt/cm)
H magnetic field (gauss)

QE electrostatic force (dyne)

Q(VxH) Lorentz force (dyne)
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Since V is dimensionless, E and H have the same units. We also define

the constants

E, = |E| H = [H] (11)

QH/e (em™ 1y (12)

€ = QEl/e u

where e = mc2 (erg) is the rest energy of the particle.
In computation, € and Y may be evaluated in terms of Ei in MV (mil-

lion Volt) per cm, H in gauss, and e' in MeV by observing that

8 8
e = /e = (+na) (B} 10°)(EL9/(e' 10%) (@ 1L = nEl/er (13)
6 108 nHc . -14 -4
U = Qd/e = (+nq) H/(e' 107)(q —E—J = i.‘gT'lO = +3n x 10 "(H/e')
We also note here that an equation of form
k - ko = QEl(x-xo) (15)
implies k - ko = e(QEl/e)(x—xo) = e(ipEi/e')(x-xo)
and hence the numerical relation
" = -
k' - k! = #nE} (x-x_) (16)

(14)
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with k', ké in MeV and Ei in MV/cm.
Our objective is to find the k.e. k', direction ¥ = (ax,ay,az)
and position R = (x,y,z) at time t, in terms of their initial values
, _ (20 .0 O - .
ko’ To (ax,ay,az), and Ro (xo,yo,zo). Other initial values may be

obtained from the relations

2.5
Yo = 1+ (e, 8 = (-0 (7)
o ,0 ,0 0O 0 o
(BX’B}”BZ) = Bo(a ’ay’az) (18)
_ 0 ,0 ,0
(X ’YO’Z ) - YO(BX,BY’BZ) (19)

The final values are obtained by integrating the equations (8) and (9) by

various devices. Since

(X,Y,zZ) = vygY

the direction ¥ is always obtainable from (X,Y,Z).

I. Motion in electrostatic field E. Suppose a particle of charge

Q = #+nq, rest energy e and k.e. ké > 0 starts from R = Ro at time t = 0
in a direction Wo, and is subject thereafter to a constant electrostatic
field E = (El,0,0), E1 > 0. Its trajectory is then determined by the law

P=F= (Q,0,0) = - grad ¢; ¢ = - QE, X (20)

In our notation, this reads d(X,Y,Z)/d\ = e'ly(QEl,o,O)
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or

d(X,Y,Z)/dx = (gvy,0,0)
Since dX/dA = ydX/dt, this integrates to
(X,Y,2) = (eT+X_,Y_,Z )
Moreover, we have
2 2 _
(€T+Xo) + Yo + Z0 =v" -1
which determines
2.k

Y = {(€T+Xo)2 + wo}2

where

2 2. .2 2 2 2 0.2
W, = Yo * 2, v 1= Yo = Xo - Yocl—(Bx) )

Hence we have the explicit relation
T
A =de/Y T Lall(eT+X )+v1/ (X +v )}
o
Now from F = - grad ¢ in (20), we infer that

k- k=6, -¢=0QE (x-x)

Since k = e(Y-1), this implies

(21)

(22)

(23)

(24)

(25)

(26)

(27)
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Y - ¥, = €(x-x)) (28)
From (28) and (22) we obtain the position

_ -1
R=R + (e " (y-v,), YA, Z}) (29)
where y and A are given by (24) and (26). The energy k is given by (27)
in terms of x in (29).
The trajectory (29) is a curve in the plane of E and Wo, with y and z
monotone. For Q > 0, € > 0, vy in (24) and hence x in (29) increase without
o} o]

bound in case X0 >0, aX > 0. However, if Xo < 0, a < 0, Y and x first

decrease to their minimum values at the turning point of the trajectory, where

* = gk = = vER% * =
X* =gT* + Xo 0=y Bx, vy 0

ve= W=y (1-(8%)%
A= (2e)7 1 £n{ (1-82)/ (1482}

-1
RE= R+ (€77 (y*-y,), Y A%,Z A%)

Thereafter, y and x increase without l1imit. The trajectory is therefore
a parabola-like curve in the plane of E and Yo. The case k = 0 (start

from rest) is considered in Note 1.

Guide to computation I.(El,0,0)

Given Ro’ Wo, ké >0, e', Ei, € = i_nEi/e', T(final)
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-2.%
a. Y, =1+ (kl/en), B = (1-y 97

b A= Yo/e, T = t/A

c- (By8,587) = B (af,20,a7)

d. B={mED? + B)7 + (87

. (agna,.3,) = (T+8),60,80)/B

f G = {1+T(28;+T)}%(=Y/Yo)

g X =x + A(G-1), k' = ké 1pEi(x-xo)
ho L= 2n{(T+B+G)/ (1+82)}

i y=y ¢+ AB;L, 2=z + AsgL

Note 1. If the particle starts from rest at Ro = 0, we have the initial

conditions 60 = 0, Yb =1, ké = 0, and find at T > 0

L
Y= (BT e, ¥ = (1,0,0) (30)
x=ety-1), y=0, z=0, k'-= +nE! x BNESY

Elimination of € shows that

W0l = (-D/eD » 1, X/t e
. 2 2, 2 .. .
Since (y-1)/(y+1) < B = v"/c”, this implies

|
‘ x/t <v->c¢
|
|

i.e., the average velocity is less than the velocity at time t.
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As an illustration, consider a T particle (e' = 140 MeV) in a
linear accelerator with a potential drop of 5 MV over 10 meters. Then

5 -1

E' = 5 x 1072 MV/cm, € = E'/e' = 3.57 x 10> cm

1
1
At the end of the trip, x = 103 cm, and we find from (31) that y = 1.0357,
k' = 5 MeV. However, (30) shows that the trip would require t = 25 x 10_8 sec
whereas ﬂ+ has a mean intrinsic life of only 2.6 x 10~8 sec. (Cf. Notes 6.1,
6.2).

For orientation, we include below the non-relativistic framework
underlying the idea of the Bohr magneton. This involves the motion of a

charged particle in a central electrostatic field.

- Note 2. A particle of mass m with the circular trajectory

R = (ro cos wt, ro sin wt, 0)

(ro, w>0 constant) has a speed v, = [ﬁ] = wr_, and an acceleration
R = —sz. It therefore satisfies the Newtonian force law
- -K R K
mR = F = 2T = -grad ¢; ¢ = - Y
T
. 2 K . .
provided -mw” = - 3 where w = vo/ro, i.e., in case
%o
T mv2 =K
o o

Its orbital k.e. is therefore

1.2 _1
ko = 7MW, = Z(K/ro)
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and its total energy has the constant value

1
To = ko + ¢o = - E{K/ro)

For an arbitrary trajectory just permitting escape, from the same
radial distance ro, one must have a k.e. ke such that ke + ¢o = k°° + ¢°° =

0+ 0=20, or

For the corresponding velocities therefore

v = V2 v, = V2 . ¢2ko7m = VE-/K/rom

e

In case of an earth-rocket system, we note in passing the approxi-

mate escape velocity

2GMm 2GM _ _ /r 32.2
—/, T V/r r, = V2gro = (5280) (4000) ~ 7 mi/sec
)

Note 3. The circular motion of Note 2, with K = Zq2, was the basis for
Bohr's 1-electron atom of atomic number Z. The orbiting electron is

assumed to satisfy the classical relation

(which permits any radius T with the required vo), and also the restricting

condition
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rmv =nh, h = h/27m
o o

where n is an integer 1, 2, 3,
The latter expresses the quantization of angular momentum rmv_, or

equivalently the de Broglie idea
Zﬂro = nA = n(h/mvo)

Thus h becomes a unit of angular momentum.

The two relations together uniquely determine the radius T, and

all other parameters for a stipulated integer n; thus

Zq2/nh = 2.2 x 108(Z/n) cm/sec

v =

n

ro = nzhz/qu2 = ,53 x 10_8(n2/Z) cm

T =- %—(Zqz/rn) = -mqu4/2n2h2 = —13.6(Zz/n2) eV

For n=1, Z=1, we obtain the "fine-structure'" constant

Bl = Vl/c = qz/hc v1/137 .

Note 4. (a) A bar magnet of length L and pole strength % (cgs unit =
esu charge) at angle 6 with a uniform magnetic field H (gauss) is subject

to a torque 2R x F = 2R x %H (cm dyne=erg), with a magnitude

|2R x mH| = L%IHlsin 9 erg

. - . v
as in Fig. 1. The quantity Lm (erg/gauss) is called its magnetic moment.

Note the simple relations of cgs units revealed by the schematic equation
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Q|E| = Q'/r% = F = mm'/x” = m|H|

(b) A plane loop of area A carrying a current i (esu/sec), in the same

field H, experiences a torque of magnitude

(Ai/c)|H]|sin 8 erg

due to the Lorentz force L of the field on the moving charges. By analogy,

Ai/c (erg/gauss) is called the magnetic moment of the loop. (Note the units

of (Ai/c)|H|:

2
E—%%é%%-lH] = L%[HI = L x dyne = erg)

(c) The orbital electron in Bohr's H-atom (Z=1, n=1), if regarded as

producing a current
i-= q(vl/Zer) esu/sec
in a loop .of area A = ﬂri, should give rise to a magnetic moment

W, = Ai/c = qr1v1/2c = q(rlmvl)/ch = gh/2mc

B

9.274 x 10”41 erg/gauss

a unit called the Bohr magneton.




Fig. 1.

Magnetic Moments
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II. Motion in magnetic field H. The force equation is now

P=F=Q(WxH (32)

where F is the Lorentz force, for which

k = FoV = 0 (33)

by (1.6), since Ve(V x H) = H(V x V). Thus k and all other scalar parameters

retain their initial values on the resulting trajectory. In particular,

k =k, Y =¥, B =8, (34)
and hence
T
A =fd'r/y = T/YO (35)
(6}

For a constant magnetic field

H = (-H,0,0); H>O0

we may write (32) in our notation as d(X,Y,Z)/dA = e-lyQ(V x H) =

u(X,Y,Z) x (-1,0,0) or

d(X,Y,2)/dr = (0,-uZ,uyY) (36)

Thus we have at once

X =X X=x_ + XX (37)
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Moreover, we infer from (36) that
dr,zy/d? = 1t (y,2) (38)

and therefore

<
1]

Yo cos U A - Zo sin Y A (39)

N
1

Zo cCosS U A + Yo sin y A
The first constants are obviously necessary, while the second pair is de-
termined by (36), with A = 0.

Since (Y,Z) = d(y,z)/dA, integration of (39) gives

R = Ry + (X AHT(Z-20), -1 (Y=Y, ) (40)

. . . _ 0O 0 o
Using the initial relations (XO,YO,ZO) = YOBO(ax,ay,az) these results

can be written in the form

(o)
X = yoBoaX (41)
Y = v B (a° cos ur-a° sin uA)
= Y8, (8, HA-a U
Z=vY8B (ao cos uk+a° sin UA)
00"z y
o
x=x +YBa A (42)
-1 _ -1
y=n +u z n, =Y, -H YB.a,
_ -1 - -1 o]
z=L - WY Co—zo+u YoBoay
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where we know A = T/Yo. Since Y, B are constant, (41) is equivalent to

o
a =a_ (43)
o o .
a = a cos UA - a  sin uA
y y H z 3

s\
1}

o o _.
a_ cos HA + ay sin ui

If Wo = (+1,0,0), the particle is unaffected by the field, the tra-

jectory being the line

parallel to H. For Wo # (+1,0,0), we write

= (40 40 .0y _ . . .
Wo (ax,ay,az) (cos wo’ sin y  cos ¢0, sin ¢b sin ¢O) (44)

in terms of spherical coordinates. Relations (42,43) then assume the more

transparent form:

X=X+ YoBo(cos wo)l (45)
y =ng+ u'lyoso sin §_ sin (9_+ud)

2 =g - w8, sin y_cos (¢ +uh)

a_ = cos wo (46)
ay = sin ¢b cos (¢O+Au)

a, = sin wo sin (¢O+Au)
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For ai = COS wo # 0, this is a spiral of uniform pitch, with axis

parallel to H, through the point (xo,no,co), and radius
r =lul™ty B8 siny (47)
0 o0 o]

The time of revolution is given by uA = 2w, namely

t, = 2my /clu

In the special case of an initial direction perpendicular to the field

(az = 0, sin wo = 1), the curve reduces to a circle of radius

r, = YOBO/Iul (48)

in the plane x = X,» with center at (xo,no,co). The (cyclotron) period

and frequency are then

t = 2ﬂYo/clu| £o= 1/t = clul/ZﬂYo (49)

(Note that Zﬂro/to = Boc = Vs the constant speed.)

We recall here the numerical relation
-4
W= +3n x 10 "(H/e')

with H in gauss, e' in MeV.
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Guide to computation II. (-H,0,0)

+3n x 1074 (H/e'),T

Given Ro’ Wo’ ké, e', H =
a. vy, =1+ (k'/e") B = (l-Y_z)l/2 w = u/y
o} o] ? o o ? o
b. C = cos wr, S = sin wt
= (29 .0~ _O 0.. O
c. (ax,ay,az) = (ax,ayC aZS, azC+ayS)
d. X=x +8 a’t
o] 0 X
-1 0 o)
Y =¥, * w8 (ars-a; (1-C))
_ -1 o o
z=2z +uW Bo(azS+ay(1—C))
e. k' = k!
o]
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Note 5. In the case of circular motion (a2=0), a 500 MeV n+ particle
(e'=140 MeV) in a field of H = 16000 gauss makes a circuit of T, = 130 cm

in a time ty = 2.8 x 10—8 sec.

In fact,

-4 -1

U =23x10 (H/e') = .0343 cm

Y, = 1+ (k'/e') = 4.57

P IR
YoBo = (vy-1)* = 4.46
r, = YOSO/[ul = 130 cm
t, = 2ﬂyo/c|ul = 2.79 x 1078 sec.
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III. Motion in superimposed fields.

A charged particle in superimposed fields E, H is governed

by the law
P=F=QE+QVx# (50)
If QE = -grad ¢, then necessarily by (1.6),

k = FoV = QE*V + 0 = (-grad ¢)*V = -¢ (51)

even though F itself is not derivable from a potential. Hence, for

the constant field

E = (E,0,0), E; >0 (52)

which we always assume, with

QE = -grad ¢, ¢ = -QE,x (53)

we have throughout Part III the relations

P
I
e
Il

QE, (x-x) (54)

<
!

<
1}

e(x—xo) (55)

just as in Part I. In the rest of this section, we consider the possible

orientations of H relative to the stipulated field E.
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I1I. (A) Parallel Case.

We assume
H = (-H,0,0), H> 0 (56)

(The case (H,0,0) is obtained by changing H to -H and y to -y

throughout.) We may now write (50) in our notation as
d(x:Y’Z)/d)\ = (CY,-HZ,UY) (57)
Comparing this with (21) and (36), we have as in I and II,

X =¢g1 + XO (58)

Y = Yo COS MPA - Zo sin uA

Z = Zo COS UA + Yo sin uA

R=R + (e (r-v ), w i@z ), -t (v-v )) (59)

Since (XO,YO,ZO) Y B (ao,ao,az), we may write (58), (59) in the form

oo x’"y
X = et + X (60)
_ ) 0 .
Y = YoBo(ay COS UA a, sin HA)
Z = B (ao cos ur+al sin A)
= v,8,(a, WA+a, u
x=x +el(y-v.) (61)
(o] (o]
y=n_+ulz n o=y -ulysa®

(o] (o} (o] 0 0 2




— - = —'l Y |
Z =g uoy T = Z, + U YoBoay {61) cont'd.

Moreover from (58), we see that

Y2 -1= X2 + Y2 + 22 = (€T+Xo)2 + Yi + Zg, whence

v = e ) 2lY, W= - 89)?) (62)
T
A =4£.dt/v = e enll(etsx ) +v1/ (X ry )} (63)

just as in Part I, and again we obtain
k =k, + QB (x-x_) (64)

from x.

It appears from (61), (62), (63), (64) that the behavior of x and k
is precisely that described in Part I, while the y,z components of the tra-
jectory are similar to those of Part II but depend on an angle of revolution
non-linear in time.

If Wo = (+1,0,0), the trajectory is the line

- -1 - -
x=x *eTO-Y), Y=y, z=z
the motion being exactly that in the absence of H.
If"{’o # (+1,0,0), then defining spherical coordinates wo, ¢o as in

(44), we see that
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X=¢€T + Xo (65)

Y = YoBo sin wo cos(¢o+uk)

Z = Yoeo sin wo sin(¢o+uk)

x = x_ +ety-y) (66)
(o] (o)

y=mn,+ u'lyoso sin ¥_ sin(¢_+A)

N
It

-1 .
go -u YoBo sin wo cos(¢o+uk)
This is a spiral on the same cylinder as in the absence of E
(Part II), but of non-uniform pitch, the x-displacement being exactly

that in the absence of H (Part I).
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Guide to Computation III (A) (El,0,0),(-H,0,0)

. -4
Given Ro’ Wo, ké, e', Ei, £ = ipEi/e', u=+3n x 10 "(H/e'),T

-2.%
a. Y, =1+ (ké/e'), By = (1-Y02)

b A = Yo/s, T=1/A, w-= u/yo

c: 6= QTR 1D

d. L = £a{(T+B _a +G)/(1+8 a))}

e C = cos}ie_l L, S = sin u 6-1 L
f. B = (B;1T+az)2 + (a;)2 * (aZ)2

_ -1 o o o o] o
g. (ax,ay,az) = (Bo T+ax,ayC-azS, aZC+ayS)/B

h X =x o+ A(G-1), k' = ké i_nEi(x-xo)
-1 (o] o}
i y =Y, + W Bo(ayS—aZ(l-C))
_ -1 0., .0
z =z +uW Bo(aZS+ay(l-C))

Note 6. The non-relativistic version of the motion in the parallel case

IITIA results from the force law
d(mvx,mvy,mvz)/dt = (QEl,-QHvz/c,QHvy/c)

or, in our notation
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d(BX’By, BZ)/dT = (S)_uszyusy)

This implies the trajectory

o 1 2

X =x * Boaxr * 5 ET
y=n_ +u 18 (a2 cos yr+a® sinut), n =y - ulg a®
o} 0"z y ? 0 o] 0z
z =0 - u—lﬁ (ao cos uT—ao sin WUT) L =2z + u-IB a’
o oy z > o 0 oy

For the initial conditions RO = (0,0,0), Wo = (0,1,0) perpendicular to

the fields, and B = Bo > 0, we see that

x = +er
2

y =4 B sinur

pt B, (1l-cos ut)

N
]

This is a spiral of non-uniform pitch, on a circular cylinder of radius
u'l Bo’ and axis parallel to the fields through the point (0,0,u_lBo).

If for uT << 1 we use the approximations

1

_1 2 =1 _ -1 1,22 1 2
x =5 et y=u" B (ut) =BT z=u" B GUT) =3 B, HT

we see that the trajectory cuts the plane y = L at T = 8;1 L, in a point with
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Elimination of Bo gives

2 1

VA = (E 8-1

wityx = & B]t HLY) (@/e)x

This is the parabolic locus of the intersections of the trajectories

with the plane y = L for particles with the same charge Q but different

initial velocities (O,Boc,O). Observation of the parabolic trace permits

evaluation of the charge to mass ratio Q/m of the particles, a method used

by J. J. Thomson.
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III B. Perpendicular Case. Assuming H = (0,H,0), H > 0, the force law

(50) may be written as

d(x’Y,Z)/d)\ = (EY-UZ’O,HX) (67)

Trivially therefore

Y=Y Yy =y +Yo>\ (68)

Now the relation vy - Yo = e(x-xo) implies that

dy/dA = edx/dA = eX (69)

Hence, differentiating the equations

dX/dA = ey - uz dz/dx = uX (70)

results in the system

a2/ + @2e®x =0 dPza? « w2z = ey (71)

>
We must now consider separately the three cases uz z 82,
. > . . . . .
(i.e., H p: El) which result in quite different motions. In all three,

we shall employ the following uniform strategy:
a. Solution of (71a) for X(A), determining its two constants from

X{(0) = Xo’ and substitution in (70a) with A = 0.
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b. Determination of x(A) by integration of
dx/dx = X(A)
c. Obtaining Y(A) and k(A) from

Y- Y, =eM-x), k-k =Q (x-x))
d. Finding Z(\) by substitution of dX/dA and y(A) in (70a)

e. Determination of z(A) by integration of

dz/dXx = Z(A)

In this way, no use is made of (71b).
These steps may be carried through in explicit form to give all
variables as functions of A. Unfortunately the dependence of X on T is of

an implicit nature. Since dt/dX = Y, we have

A ‘
T =_[y()\)d)\ =T (72)

in terms of the known y()). Thus we require also the step

£, a=T1 (73)

. ‘o . . . >
a relation requiring approximation methods in the cases H < E Such methods

1°

are not discussed below.
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III(B)1 u” = €”, In this case we obtain from (70), (71)

dX/dX = u(y-2) (74)
d®x/dx% = 0 (75)

Following the strategy indicated, we find

= ' t = -
X)) X, + XX X3 = Uy, -2)) (76)
X(A) = x_+ XA+ £ xn? (77)
(o} o 20
YOO =y o+ uX A+ & uxa? (78)
o] o 2 o
ZO) = 2+ uX A+ & uxna? (79)
o o 2 o
_ 1 2 1 3
z(A) = z, * Zo)\ * 5 uon * e uxc'))\ (80)
Y = Yo y =y + YOA (81)
_ 1 2 .1 3
T(A) = YOA * 5 XOA "8 uXéA (82)

Guide to Computation. III(B)1 (El,0,0), (0,H,0) H = E1

. -4
Given Ro’ Wo, ké, e', Ei, U= +3n x 10 "(H/e'), T

= t/at = -2y
a. Y =1+ (kl/e") B, = (1-v,9)
0 ,0 ,0, _ o _o0 o
b. (BX’BY,BZ) = Bo(ax:ay’az)

2

1 o,2 1 0,13 -
YAt Uy, BT r 2wy (1-B )27 = T(A)

¢]
-
1}

rim

>
1]
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d. B =B *+ WA(1-B))

»? O

B = BZ + uA{Bi + %ﬂl(l—BZ)}

2

2 0.2
B =B, + (8" + B

o}
e. (ax’ay,a-z) - (BX’B)”BZ)/B

o 1 o

f. Ax = YOA{BX + 3 uA(l-Bz)}
x = x + Ax k' = k' + nE! Ax
o o— 1
o
g Y =Y, VB A
h 2=z +7T-v_ (1-89)A
) ) Yo z

Note 7. The routine for the perpendicular cases III(B)1, 2, 3 require solu-

tion of an equation
A
T =fy()\)d>\ = T\

[0}

for A > 0 in terms of a given T > 0, the function I'(A) being strictly in-

creasing with
4
') =y(\) >1, T =0

If desired, this can be done algebraically in the present case (u=€), since

from (82)
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1 2 1 3
T=YA KA + HXIATS XD = w(y -Z)

which may be written as the cubic equation

£ e bl s cEvd=o0, £ = A

where

b=3/8 c=6/B d=-6ut/ypB
_ .0 _ o
a = Bx B=1- Bz >0

For £ =n - b/3 =n - a/B we obtain the reduced cubic

n3+ PN +q=0

where p = ¢ - b2/3 = 3(28—a2)/32

q=d- Jerzp) = - H- i%i (38-0%)

(o}

Note that 8= 1 - 80 > 0 and p = 3(28-a")/8” = 3—2(2-25‘2’-(3?()2)» 0. In fact,
B

0< B <82 - @87 = -8 + 1-(8HH

0,2 )
<1 - (BZ) < 2(1—82).

It follows that W = (p/S)3 + (q/2)2 > 0, and such a cubic has just

one real root, namely
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~

- (- %.+ wl/2)1/3’ J = -p/3H

o ol
[

Hence from Bi, 1- BZ’ M, Yo’ and a given T, one may compute o, B, p, q, W,

A A

H, J, n, g =N - Q/B N and

A= E/u




ITI(B) 2. u°
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> 82. Equations (70), (71) now yield

dx/dA =€y - uz

2 2 2 2

dzx/d)\2 + 87X =0, =y -€e“ >0

Our method shows that

X(A)

x(A)

Y(A)

Z(\)

z(A)

T(A)

Assuming

* . * _1
X cos SA + X_ sin 62, X § 7 (
(o) o (o]

. -1 . *
Eo + 6 (X, sin GA-XO cos 6)), £0

1]
[

+ eﬁ—l(x sin SX—X* cos S8A)
o o

- * -2
G =v_ + €6f Xo = ud (uyo-eZo) >0

-1 . *
eGo/u + ud (Xo sin dk—xo cos 8A)

Y = YO Y=y, * Yol

€Y,-HZ,)

=x + 6 °X
o o

-1 -2 * .
Co + €l GOA - ud (xo cos 6A+Xo sin 8A)

€672+ G A - 672 (X_ cos SA+X_ sin SA) = T(A)
[o] (o] (o] (o]

X2 + X2 > 0 (80, efug®) we may define
o (o} x" 7 z

2 %24 _ . _
(xo+xo )%, cos 60 = XO/AO, sin 60 = X

and write the trajectory in the form

*
O/AO

(83)

(84)

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)
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-1 .
x=& + 6 A, sin (ax-eo) (93)

= A
Y=Y ¥ Yo

z = Co + su—l GOA - u6_2 Ao cos (SA—GO)

This may be visualized as an elliptical spiral with axis in the direction
of H, undergoing a drift in the z-direction.
*
In the very special case Xz + on = 0, the trajectory is the straight

line

in the plane x = x_.

Guide to Computation. III(B)2. (El,0,0), (0,H,0), H > El'

. 2 2.4 2
' ! ! = - = = =
Given Ro, Wo, ko, e', El’ ) u=-e7) 72, € e/6, My u/s, Hiq u/é", T

. Yy =l (kl/e) B = (1-y]H)?

o]
o ,0 0, _ 0o 0 o

b. -(BX,BY,BZJ = Bo(ax,ay,az)
¢ X =g, -y g° G, = €, (4,-&,8%)

: 17 %1 7 Mk, 17 &M ER,

*
d. T =y {(u/ e + (81/6)[82(1—cos 83) - X| sin &A1} = T(\)
A =T

e C = cos S8A S = sin S\
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f ° *S G, + S X*C
= = -

. B B.C + X1 BZ Ul(B 1 )

X 1

_ 2 0.2 2.%
B = {B +(8)*+B )

_ (o]
g. (ax,ay,az) = (Bx,By,Bz)/B
_ o1 Oc,y™
h. Ax = § YO{BXS+X1(1-C)}

X =X + Ax k' = k' +nE! Ax
o— 1

i. y = yo * YO B;A

. o *
j. 2=z + YO{GIA + ull[Bx(l—C)-XIS]}

Note 8. While we include no approximation methods for inverting the relation

T = T'(A), it may be noted that (90) may be written in the form

sT/Y, = 5183 +u €, & elcsi cos E+B . sin £) = F(8); £ = &)

_ _ 2 2 _

€, = e/é8 B o= u/é M- €] = 1
_ _ (o] _ _ o]
Cijg =¥ - &8, >0 By; = & - 4B,

The function F(&) is strictly increasing, with

F(0) =0 F'(8) =v/vy,21/y,>0 F'(0) =1 F"(0) =¢8>

(o}
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III (B)3 u2 < ez. We now have from (70), (71)

dX/dx = gy - uZ (94)

a%x/a? - s% = o s2=e2 -0 (95)

and obtain by the standard method

a8 -8\ _1 * 1l *
X(A) = Ae™" + Be A= 5(X #X ), B = (X -X) (96)
NER Z
Xo = (eyo—u o) >0
x) = £+ 8 e pe ™y, £ - x - sl (97)
(o] (o] [o}
Y(A) =G, + e67! (ae?*-pe™%h (98)
_ -1 - -2 ;
Go =Y, - e§ ~ X = -ub (uyo eZo)
Z(A) = G /u + ué_l(Aeax—Be-al) (99)
-1 -2, 8A _ -8\ -2
2(A) =g, + eu "G A+ us “(Ae "+Be” ), L, = Z, - us "X, (100)
Y=Y y =y, + YA (101)

T(A) = _gs'zxo + G A+ es72 (ae%MBe™O = T'(A) (102)
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Guide to Computation. III(B)3 (El,0,0), (0,H,0), H < E1

. 2 2% 2
] ] ] = - = = = /
Given Ro’ ?o, ko, e', E!, § (e™-u™)%, € e/s, My u/s, Mg u/é”, T

1,
- = (1v2%
a. Yo =1+ (k;/e') B, = (1 Y, )
0 ,0 ,0. _ o _o _o
b. (Bx,By,Bz) = Bo(ax,ay,az
c X* =g - ° G, = -e. (u,-¢ Bo)
. S B L 1 1H1781P,
_ .1_ o * _ L O_ *
Ay = 5 (BFX)), By = 3(B-Xy)
_ o S -6 1y =
d. T = Yo{(ul/el)le + (61/6)[-Bx+Ale +Be 1} =T
A =T )
e. C = eal, S = 1/C
£f. B, =AC+BS, B =G + ul(Alc-BIS)
_ 2 .,0.2 2%
B = {Bx+(6y) +Bz}
0o
g- (ax’ay’az) = (BX’B)”BZ)/B
h Ax = v 8 L (-x +A.C-B.S
. = Yo% " (-X;*A,C-B,S)
X = x + Ax k' = k' + nE!'Ax
o o— 1
Loy =y, Y B
- _ (o]
j z 2, * Yo{le+u11(A1C+BIS Bx)}
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Note 9. In the inversion of T = I'(A), we note that (102) may be written

in the form

_ le) g -E = . =
§T/vy = -€B *+ U Cl 8 + g (A e™B eT7) EF(E); £ = 8
- = 2 - =
e = ¢€/8 By = w8 € - up =1
c,. = e,

11" &P W

= o - o - o]
A11 = (BX+D11)/2 B,. = (Bx—Dll)/Z D.. =€, - u.B >0

11 11 1 1"z

The function F(§) is strictly increasing, with
o
= ! = 1 = 1" =
F(0) =0 Fr (&) =v/v 2 1/y, >0 F'(0) =1 F'(0) = €,8B_.

It can be shown* that B11 <0< All’ and therefore

2 3

+B__e

2
11 ) =0 fore” = —Bll/A11 > 0.

F'(E) = & (A, e

11 = Bz < 0. Thus F(x) is concave up for all

& >0 if Bz > 0, and has a single inflection point at & = (1/2) log (-Bll/All)

Moreover —Bll/All > 1 iff A11 + B

. o
if Bx < 0.

-2 2 _ 2 2 2 2 2
*0 < YO + Cll Dll —(BO-(BZ) ) iDll - (Bz) .
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III(C). Arbitrary Orientation. Having considered in III(A), (B) the

parallel and perpendicular cases, it is clear that all other orientations

of the superimposed fields are included under the equation
P=F=QF +QVxH
where E = (El,0,0), E1 > 0, and
H = (HC,HS,0), H> 0
C = cos 9, S = sin 8
0<B6<m, 8 # m/2
We recall that the relations

k - kO = QEl(x—xo), Y-, = e(x—xo), dy/dx = €X

are still valid. For the stipulated fields, the force law in our notation

becomes

(X',Y',Z2') = (ey-uSZ,uCZ,u(SX-CY)) (103)

where primes hereafter indicate derivatives with respect to A.

Differentiating in (103), we see that

X" = A X + B.Y A =€ - u’s B. = u"sC #£0 (104)

-uzcz <0

=<
n

o
<
+
O
~
O
I
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the determinant of the system being

A=AC. - B2 = -ule2c® <o (105)
and moreover

YALE S uZZ = neSy(A) (106)

The form of (104) suggests solutions X, Y which are linear combinations

of trigonometric and exponential functions. If we assume

X=U+V (107)
U = U1 cos K\ + U2 sin KA K>0
LA -LA
V = V1 e +V2 e L>0

A A
with Y = U + V a similar combination, substitution in (104) requires

-K2U + L2V = Al(U+V) + Bl(U+V)
K%+ LY =

Bl(U+V) + Cl(U+V)

This will be true provided

Y=U+V=cU+dV (108)

where

¢}
|

2 2
= -(K+A /B, d = (LT-A))/B (109)
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and (K%+A.)/B. = B./(K2+C.), (L?-A.)/B, = B./(L®-C.)
/B =By 1) /B = By R
The latter require that (cf (104))

K% - %{_(ez_uz)m}, L2 - %{ (ez-u2)+R} (110)

2 5
R = {(e®-uH) 2emeichy?

Hence for the positive values of K, L in (110), and the resulting
values of ¢, d in (109), we obtain a solution X, Y from (107) and (108)

involving four arbitrary constants

The following relations are readily verified from the definitions.

Some are useful in evaluating later constants.

K2 4 A >0 L - A >0

2.2 R 25 g2 25 2
I T T T N R XX

d-c-= (K2+L2)/Bl = R/B, ed = -1

ck? 4 aL? = -uZCZ(K2+L2)/B1

dK2 + cL2 = -Al(K2+L2)/B1

It remains to determine the four constants Ui’ Vi' Using (107), (108),

and (103), we obtain the linear equations
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U + V. + VvV, =X (111)

4
s
<

1
(ot
<

I
~<

n

2 1 2 (o} €Yo - uSZo

ckKU, + dLV. - dLV2 = Yé = uCZo

with determinant

A" = 2KL(d-c)? = 2KL(K2+L2)2/Bf >0 (112)

Solving the above system gives the'explicit constants

U = -(Y -dX )/ (d-c) (113)
U, = -(Y}-dX!)/K(d-c) |
vV, = {L(YO-cxo) + (Yé-cXé)}/ZL(d—c)

V, = {L(Y_-cX ) - (Y!-cX!)}/2L(d-c)

with X', Y' as in (111).
o’ o

Integration of dx/dA = X(A) now yields

x =+ K'lcul sin KA-U, cos KA) + L'l(vleLl-vze'LA) (114)

_ _ -1 -1, -
Eo = Xg * Xp» Xp 2K U, - LTO(V,-V,) =~y fe

From this and the relation y - Yo = e(x-xo), we obtain

LIIIIIIIIIIIIIIIIIIIIIIIlIlIIIIlIIlllIlllllIllIIIIIlIIIIIIIIIII-IIIIlI-I-I----------
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Y = ek"' (U, sin KA-U, cos KA) + EL-l(VleLl-Vze_LA) (115)
A
and therefore from T =fy (A)da
[o]
-2 -2,
T=T, - eKU+rel™v = TN (116)

- -2 -2 -
T, = e{K u,-L (v1+v2)} = -(CX_*SY )/eC

From dy/dX = Y and (108) we find

y =1 + cK'l(u1 sin KA-U, cos KA) + dL—l(VleLA-Vze_LA) (117)

1

- - - - -1 - = -—
No =Yg * Yy» Y = KU, - dL (V)-V,) = (eZ-uSy )/ueC

1

Since Y' = uCZ in (103), we may bypass (106) and obtain 2Z = (uC)_lY'.

In this way, we find from (108),

LA, -LA

S ST dL
Z = ic ( U1 sin KA+U2 cos KA) + oc (Vle 2€ ) (118)

and since dz/dXx = Z(A), we have
z=7 +Syu+dy (119)

0o uC uc

. ) cU1 . d(V1+V2) .,
o % uC e

FJO<

It may be shown that

c/uc = e us/k2 k), a/uc = €2 ps/illed (120)
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(The ballistic trajectories of this section were obtained in a more

complicated way in an earlier report LA-4967-MS.
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4. Motion against "friction.'" If a particle of proper energy e > 0

starts from R = 0 at time t = 0 with initial momentum Po =P, WO, and is

subject thereafter to a "friction" F = -HP, H > 0 constant, then the force

law P = F = -HP implies

P=P ¢ (1

Since P = p¥, we have for the magnitude and direction

P=p, ¢ s ¥ = To (2)
Hence from dR/dt = V = v¥ = VWO follows the linear trajectory
t
R = s(t)‘{’o, s(t) =f v(t)dt (3)
[}

It remains to evaluate v(t) and s(t).

Case 1. e > 0. For a material particle we know

L Cp -
(rP-1% = ¥8 = cp/e = —e°— ™™, whence
2.k -1
v/ = 8= (1Y 27 = {1+(e/ep )21 5 o @)

Making the substitution

2 2Ht };ﬁ

g =g(t) = {1+(e/cp ) e

we find that




-60-

t

] S EOMEDD | £(0)+1
® ‘_[" dt = 55 0 G T ey T 2 B @) (5)

In computation based on initial k.e. ko, one may note that

_ 2 _ 2.2 _ .2
Y, =1+ (k/e) and (cp_/e)” = v B =7, -1.

Case 2. e = 0. As a purely mathematical exercise, which introduces

some basic ideas of cosmology, we may consider the effect of such a friction
on a photon of initial energy Eo = cp, = hvo = h(c/ko). In this case we have
trivially

vec, s=ct, R=ct To, P=Dp_ € (6)

and find an energy degradation expressed by the equation

H
- =5
E=EFE e¢Ht_p ¢ ¢ -g ¢35 (7)
o) o o)
S = c¢/H
This would result in a longer wave length
A =a e3/S 5
o o
and consequently a ''red shift"
A=A
z = — 0 - es/s = (s/S) + (s/S)2/2! + ... (8)
o}

Thus a friction F = -HP, acting on the No photons, of average energy Eo’
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emitted per second by a source of luminosity Lo = NoEo’ at constant

distance s(Mpc), would produce a flux

¢ = NOE0 e—s/s/4Trs2 = L0/41rs2 es/S erg/sec (Mpc)2 (9)

exhibiting a red shift z = ES/S - 1. The distance indicated by an observed

shift z is therefore
s =8 Ln(l+z) (10)
Elimination of s between (9) and (10) yields the flux-shift relation
6 = L /am 7 (1+2) 2 (1+2) (11)

Defining the apparent and absolute magnitudes m, M of the source in

the usual way by

10723 = /6 10725 = (1 /am 1070

/%, (12)

where ¢o (erg/sec(Mpc)z) is a standard flux, we may write (11) in either

of the forms

m=M+ 25+ 5 log S+ 5 (log e){%-ln(l+z) + Ln n (1+2)} (13)

m=M+ 25+ 5 logS -5 log log € + 5{%—10g(1+z)+ log log(l+z)}  (14)
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5
It is customary to replace the variable z by w = log kz, k = 3 x 10,

in terms of which one may verify from (13) that

1
dm/dw = (dm/dz)/(dw/dz) = sifhliz * (l+z§£n(1+z)$ =3
with limit 5 as z »- 0. Similarly,

dzm/dw2 =

5 g z _zl[z-€n(1+z)] ‘< 0
log € |5142)%  (1+2)% ehP+) V™

with corresponding limit O.

In reality, a red shift z =~ Hs/c = s/S is observed in light from

galaxies at distances s << S (Hubble's law), where H = 3.24 x 10718 sect

is "Hubble's constant,'" and S = ¢/H = 3000 Mpc.

Taking S = 3000 Mpc in (14) and (10) gives

m=M+ 44,20 + 5{%—10g(1+z)+log log(1+z)} (15)
s = 2.303 (3000)log(l+z) Mpc (16)
Thus, in a static universe with a friction F = -Hp (H=3.24 x lo_lssec—l)

acting on photons, (15) relates the observables m, z, for a source of absolute
magnitude M, while (16) gives the (unobservable) distance to the source.

It is curious that the apparent slope limits of the observed function
m(w) are those noted above for the function in (15), and moreover, (15) with
M = -20.3 is in fair agreement with the observations, considering the inac-

curacies in M and S. (M. L. Humason et al., Astron. J. 61 (1956) p. 149.)

llIIIIIIIIIIlIllllllllIll!lllllll-------------------"-'-------J
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(For an "average'" galaxy, Lo = 1010 L0 =4 x 1043 erg/sec, M = -20.3.)

The equations (15) and (16) may be used to give the absolute magnitude
and distance in terms of an observed m and z. Thus the quasar 3C9 (reported
m = 18.2, z = 2.012) would have M = -25.6, s = 3308 Mpc, while for quasar

PKS 0237 (m=16.63, z=2.223), M = -27.4, s = 3512 Mpc.

Note 1. (Olbers' paradox and friction) Suppose infinite Euclidean space
has a uniform density of n, motionless point galaxies per cms, each of lum-
inosity Lo = No Eo erg/sec. Such a galaxy, at distance s (cm) from earth,
produces a flux ¢ = L0/4'rrs2 erg/sec cmz, in the simplest model, of which
the earth, of radius r, receives an energy ﬂrz times this. Multiplying by
the number no(4ﬂszds) of galaxies in the ''s-shell" about earth, integration
onr < s < o, and division by the earth's surface area 4ﬂr2, gives the in-

finite result
¢ = l-n L ds erg/sec cm2
e 4 0 o
r

for the earth's surface flux (Olbers' paradox).

Assuming the '"friction'" F = -HP of Case 2 above, we should replace the

s/

above flux ¢ by Lo e S/41rs2 (S=c/H), obtaining the finite result

oS

(1 -S/S 4g o L 2
q>e —f4 n Lo e ds = n Lo S erg/sec cm
T

With n, = 10—75 galaxies/cms, Lo =4 x 1043 erg/sec (M=-20.3), and
S= .93 x 1028 cm, one finds ¢e * .93 x 10_4 erg/sec cmz, which is far too

large. (Just visible flux ¢ ='10-7 erg/sec cmz, m=6.)
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5. The Lorentz Transformation. Up to this point, we have considered

particles and events in a single inertial frame I of events (R,t). Now
suppose L and I' are two such frames, each subject to the provisos of §1,
the position space of X' having constant velocity V0 = VOWO, v, =]V°| < c,

relative to that of Z. We use throughout the notations
- - (1.@2\% '
B, = v /c <1, Y, = (1-8))72 > 1 (1

The Lorentz transformation then sets up a one-one correspondence
R,t)v (R',t') between all events in I and L', corresponding 4-vectors being
regarded as the ''same event,'" as it appears in the two frames.

Adopting (parallel spatial) standard axes S, S' (Fig. 1), having coin-

cident X, X' axes, with Wo = (1,0,0)3, and agreeing that the events (0,0)z

and (0,0)2, correspond, the Lorentz transformation assumes the simple form

x =y (x'+v t') (2)
y =y'

z = z!

t =

v
= Yo(—g-x'+t)
c

which is a linear transformation of determinant
2 2, _
Yo (1-8)) = 1 (3

Its mathematical inverse (and that of other transformations derived from it)
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—_——
/ Voz(V0,0,0)

ZI

Fig. 1.

Standard Axes
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is obtained by changing v, to v, and interchanging primed and unprimed
variables.
If we introduce the variables T = ct, T' = ct', we can write (2)

in the more elegant form

X =y (x"+B_1") (4)
y=y'

z =1z

T = ¥, (Byx'+1")

Two mathematical properties of the transformation (matrix) itself are

easily verified, namely
R™ - T° = R! - 1! (5)
IRl <t and T >0 iff |R'| < T ' > 0. (6)
The first is an obvious consequence of (4). As for (6), it suffices
to note that |R!| < T' implies |R]| < T by (5), and moreover that T' > 0 then
implies

te YO(BOX'+T') z YO(-BO‘R'!+T') ;Yo(—BoT'+T‘) = Yo(l-Bo)T' > 0.

The inverse transformation yields the converse.
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In practice, given spatial axes are usually not in the standard con-
figuration of Fig. 1, and auxiliary rotations are required to apply the
simple Lorentz transformations. These are discussed in App. I, and will be
referred to when necessary. An alternative device is afforded by the '"vector
form" of the transformations. These are included in the appropriate sections.

The space-time Lorentz transformation may be written in vector form,
applicable to any set of parallel spatial axes A, A' (Fig. 2). We first de-
compose the vectors R, R' into components parallel (l]) and perpendicular

(L) to the (unit) direction vector WO in the usual way (Fig. 3),

R=RH+RJ_, R”E(R”Yo)‘yo, R_LER—RH

R =RH+]1, RH=(R"¥0)\PO, lﬁ-=R —RH

The transformation (4) then asserts that

ReY ) = Y ((R *¥ )+B_T )

1

Y (B, (R *¥ ) + T)

!

T

Therefore

o
i

(NU%+ﬂ=YJ®NQ+%ﬁ%+i

R' + Ly~ R ¥ )+ v BT I
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YI
5! Vo = Vo¥o
X
o/ X!
ZI

Fig. 2.

Gencral Parallel Axes

Fig. 3.

Decomposition of R, R!
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Thus we have the parallel axis Lorentz transformation

R = R' + {GO(R'-WO)WOBOT'}\PO, 60 = (Y- (7N
T = YO{BO(R'°YO)+T'}
where
R = (X’Y’Z)A’ R' = (x"y"z')Al and
_ ., 0 0 o0
WO = (ax’ay’az)A .

For some purposes it is convenient to introduce the dimensionless

"'velocity" Vo = B ¥ of the I' frame, and to write (7) in the form

R =R'+ {PO(R'-\?O)+YOT'}VO (8)
T =y LR 7 )+1'}
where
2 -2 2
Ty = 8,/8, = (vy-1)/(1-v ") = v /(v *1) (9)

Note 1. In writing the transformation (2) from X' to Z, it is tacitly
assumed that the constant c, occurring explicitly, and implicitly in Yo’
represents the speed limit of 81 as it appears in Z. Due to the physically
necessary condition that the mathematical inverse of (2) and the Lorentz
transformation from I to Z' should agree, it is easy to show that the

speed limit c must be identical in both frames, a fundamental postulate

of relativity.
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Note 2. From (5) it appears that IRJI =clt'l iff IRI = c[tl, pictur-
esquely, ''the Lorentz transformation takes the light cone into the light
cone." This may be regarded as the basic feature of the transformation.
Indeed, it is well known that an arbitrary non-singular linear transforma-
tion of two 4-spaces with this formal property assumes the simple form (2)
when spatial axes are properly aligned by rotations and units suitably

standardized. For a generalization to m-space, see App. III.

6. Time dilatation. Consider a pair of corresponding events

|
®R,t) v R,t]),  Ryt,) v R',LY)

occurring at the same point R' of I'. From (5.4) we obtain

- = e |
Xy = Xp 7 Y B, (Ty-T))
Yy =¥ =0
22 - z1 =0

T - T T Yl

Thus X, = X, = BO(TZ-TI) = Vo(tz-tl), as is to be expected, but we have

also the time dilatation effect

- = t_.11! -T!
12 Tl Yo(Tz Tl) > Té Tl (1)

which states that "a moving clock appears to run slow."
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~
It follows that a free material particle, fixed at R' in its own

A

rest frame X', with an intrinsic life span T' and moving with constant

2

velocity Vo in I, appears in the latter frame to have a life span T and

to travel a distance D given by

T =y >T, D =yBcI' = B cT (2)

Note here the identity of the transformation parameters with those

of the particle in I, and the significant relation

T/T' =y, =Y = E/e (3

(picturesquely, energy in Z is the secret of longevity in Z.)

Note 1. A free 5 MeV 7 particle (e=140 MeV) of intrinsic life span

T' = 2.6 x 10_8 sec travels 210 cm in a X life span of T = 2.7 x 10—8 sec.
At 500 MeV it could attain 3480 cm in T = 11.9 x 10—8 sec. (Yo=1 + k/e,
B, = (r2-1)%
YoPo Yo ’
These 3, life spans may be compared with the travel times of Note 3.1,

where k = 5 MeV was terminal, and Note 3.5, where k = 500 MeV was constant.

Note 2. Strictly speaking, special relativity does not give the I life

span of a particle moving with non-constant velocity V. However, integra-

tion of dt' = dt/y(t), the instantaneous version of (1), leads to the formula
T
T =f dt/v(t) (4)
o

With T' = cT', T = cT, this gives a possible generalization of the relation
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T = T/Yo of (2). For the circular motion of Note 3.5, Y is constant, and
(4) yields the same I span T as does (2) for the corresponding constant

velocity. However, for the accelerated linear motion of Note 3.1, (4) gives

1 _ 1
T' =~/Idr/(1+ezT2)2 = ¢! ﬂn(€T+(l+€2T2)é)
(0

whence

T = (1/ec) sinh (ecT') > T! (5)

In the example cited, T is only slightly greater than T'.

Note 3. A 545 Mev =° particle (e = 1315 MeV) traveling 3 cm in its I life

span, has an instrinsic life span of 10_10 sec. In fact

T 10

2 L -
D/YOBOC = D/c(yo-l)2 = 10

since

0

Y 1+ (k/e) = 1.414 = /2

o
Note 4. An earth man with 40Y to live can reach oa-Centauri, 4 LY away, at a
speed of ¢/v/101. If his rest mass is 105 gm (neglecting the ship) this re-
quires a k.e. = 500 c2 erg = 9 megatons high explosive. (1 kt H.E. = 5 x

10lg erg). For if Y is the number of seconds in a year, we have

L
(Yg-—l)2 = YoBo = D/cT = 4 cY/c(40Y) = 1/10, Yg = 101/100,

_ -2\% _ - _ -
Bo = (1-yo )* = 1//101, v, = c/Y101, k = e(Yo-l) = ¢/200.

Note 5. If two identical particles A and A', each of intrinsic life span To
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in its own rest frame I,X', are created simultaneously at (0,0)z N (0,0)2,,
and separate linearly with relative speed Voo then A dies before A' in I,

but after A' in Z'. In fact the events of their deaths are given by (5.4)

as

5 5
D(A') (Y B Tys Y T) ™~ (0,T)

cT

D(A) (O,To) v (—YOBOTO,YOTO) T

Since (5.4) is linear, this implies

(VoByTor (Yom1)Tg) ™ (Y B Tsm (Y,-1)T,)

Why does this not contradict (5.6)? The situation is schematized in Fig. 1.

Note 6. Another instance of the time dilatation effect is seen in the
frequency of arrival of photons from a receding source. If a photon source
at 0' in I' emits two photons in the direction ¥' = (-l,O,O)S, at time

' < t! issi . o= ! .= 'y a
tl t2, then the X events of emission are Xy YOBoctl, t1 Y Otl, nd

hence the times of arrival at Q0 in Z are

T, =t + (x,/c) = y (1+B )t}; i =1,2 (6)

with a time interval

AT =y (1+8 )At'.
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!
T
D(A) | z’
-D(A')
% =% I
Bo =§' -
To =4 1 I 1 —O’l (| i xl
o) X
D(A)¢
'
5 - D(A')
T
Fig. 1.

Time Reversal
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If the source emits N' such photons per sec. in Z', then the number

per sec. received at 0 in X is

N = 1/8T = 1/y (1+B )At' = y_(1-B )N' < N' 7)

This is precisely the transformation governing the energy degradation of each
photon due to the Doppler effect (812) but is an independent additional

phenomenon decreasing the energy flux at 0 in ZI.

7. Fitzgerald contraction. To emphasize the mathematical analogy with

time dilatation, we consider the pair of corresponding events

A

Rt~ RED,  Ryt,) v (R),t!)

A~

occurring at the same time t' in X'. From (5.4) we have

- = !t
Xy = X =Y, (xp7x))

- = [ 1
Yy - Yy = Y5 - Y]

~
N

I
~
ot

n
<
w0
(o}
3
. |_
o]
WA
~—

Hence,

- - | R § | | 3
Xy - Xy Yo(x2 xl) > (x2 xl), or equivalently
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- t = - -
Xy = X = (xpmx )/, < xy - xg (1)

which embodies the Fitzgerald contraction effect.

Physically interpreted, it shows that a thin rod, rigid and fixed in its
own rest frame I, and undergoing translation at speed vy in Z', appears in

the latter frame with dimensions

Ax' = Ax/’Yo < AX (2)
Ay' = Ay
Azt = Az

where Ax', Ax are the dimensions in the direction of motion, (standard
axes!) and the ends of the rod are observed simultaneously in Z'.
Very roughly speaking, we may say that a moving time interval appears

longer, while a moving space interval appears shorter. The apparent symmetry

is imperfect in that the first statement refers to a common position in the
rest frame of an observed object (clock), whereas the second refers to a
common time not in the rest frame of the observed object (rod).

From (2) we may infer the transformations

<
L]

iy, <V em’ (3)

=
]

n >n cm
Yo

2
pt =pY, >P - gm cm

for volume V', numerical density n', and density p' in terms of their

proper values in their rest frame Z.
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Note 1. A graphite rod (p = 2.25 gm/cms, M=12) has numerical density
n = p/(M/No) =1.13 x 1023 C atoms per cm3 in its rest frame. If trans-
lated at speed v_ = c/v?2 (Yo=/2), its numerical density appears to be

1.6 x 1023 {(anisotropic!).

Note 2. A "car' of length 5 cm in its own rest frame I, and moving with
speed (3/5)c in I' (-x' direction on S') appears to have length 4 cm in %'
when its ends are observed simultaneously in I'. When t' = 5/c sec, it
just fits into a ''garage" 4 cm long, and the door is slammed on it. An
observer in I sees the 5 cm car at rest, with a 3-1/5 cm garage approaching
it (ends of garage observed simultaneously in X). What happens in Z? The

reader may puzzle over Fig. 1, which we give without comment.

8. The velocity transformation. For trajectories

R(t),t) ~ R'(t"),t")

corresponding event by event in the frames I, X' of 85, the Lorentz trans-
formation (5.4) provides a T'-parameterization of the trajectory (R(t),t)

in terms of the trajectory (R'(t'),t'), namely

x =y (x'(T')+B T')
y =y'(1')

z = z2' (1)

T =

Y, (B X' (T1)+T")

relative to standard axis S, S!
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The Car and the Garage
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It is convenient to introduce here the dimensionless velocities

dR/dt

V/c = (Bx,By,BZ) =BY =7V (2)

dR'/dT' = V'/c = (B).B/,8;) = B'¥' = V!

Before deriving from (1) the transformation for velocities, we first obtain

some preliminary results. From (1), (2), and the identity
(dx/dt) (dt/dt') = dx/dt', we have
. ! - t
Bt Yo (B Bit1) = Y (B +B.) (3)
Hence for the important quantities

d* =1+ SOB; d =1 - BOBX (4)

we see from (3) that d'd = d' - Bond' = (1+BOB;) - 80(3;+30) = l/Yg,

whence

1 =
(rdD (v d) =1 (5)
Since d =1 - Bon_>_ 1 - BOB_>_1 - 60 > 0, we have both
d>0 and d' >0 (6)

Now from (1) and the identity dR/dT = (dR/dtT')/(dT/dT') we obtain the
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v, v transformation on standard axes S, S':

B)( = YO (B)'(+BO) /Yod'
= 1 1
By By/Yod
B, = Bé/Yod' d* =1 « BOB; >0 €

with the inverse

8; = Yo(BX-BO)/YOd (8)
B; = By/Yod
B, = B,/Yd d=1 - BOBX >0

From (7), we compute Bi + B; + Bf - 1= {Yg(8i+80)2+B;2+B£2-y§(1+803i)2}/Y:d'2

o2 2,012,002, 0,2 2. 2 2,2
= {Yo(l-Bo)BX +8y +Bz —yo(l BOJ}/Yod
which shows that
2 2 2 _ 2'2.0,2.0,2 2..2
B * By *B -1= (8, +By +B; AN (9)
or
1 - g2 - (1—8'2)/Y§d'2 (10)
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This is in effect the transformation law for speed. Since B = v/c,

BI

v'/c, this points up the fact that the speed limit ¢ must be the same
in Z and Z'. Moreover, v = ¢ iff v' = ¢, so that an immaterial particle
in Z' must so appear in Z, i.e.,

m=20=m (11)

For a material particle, with B < 1, B' < 1, we see from (10) that

the Y, y' transformation is
Y = y'y,d (12)

where we recall the definition

d' =1+ BB =1+ BO(V'-\PO) (13)

If we agree that rest mass m > 0 is invariant:

m=m'>0 e=¢e' >0 (14)
then we may infer from (12) the mass and energy transformations

M= M'Yod' s E = E'Yod' (m>0) (15)

for a material particle.
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By the same method we may derive from (5.7) the vector form of the

V, V' transformation on the parallel axes A, A', namely

T = (r @) LTS (71 )Y B Y ] (16)
dr = {1+BO(V'-w°)}, §, =Y, -1

where
V= (B.8,.8,)4 Vo= (BraBraB)) 4,

Again, with Vo = B ¥, this may be written as
V= oy dn) T (1T )y 1) an
d' = {1+(V'-VO)} r, = Yi/(Yo+1)

where
T = (85,8780,

Example 1. A particle of rest energy 4 moves with speed (5/13)c at 60°

with the OX' axis of L', while OX' travels on OX in I with speed (3/5)c. Then

3/5, Y, = 5/4,

w
[}}

13/12, E' = ey' = 4(13/12) = 13/3, and

g' = 5/13, ¥Y'

145/24

E = E'Yo(1+BOB' cos P') = (13/3)(5/4) (1+(3/5)(5/13) (1/2))

is its energy in ZL.

(O
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If it travels at 180° with OX' with speed (3/5)c then E = 4. Why?

9. The direction transformation. At corresponding events on the tra-

jectories of §8, we have

V=03YaV =gy (BB'#0) (1)

where ¥, ¥' are the directions of the particle as they appear in the two
frames. The V, V' transformation (8.7) therefore yields the ¥, ¥' trans-

formation on standard axes:

a =Y (a;*+0")/Y D", p' = B /8! (2)
ay = a}"/YOD'

a =a'/yD', D' =ZdB/B" = {(a+p") iy 2(1-ar?y)"

VA Z o] X (o] X

The above evaluation of D' = d'B/B' may be verified using (8.7) thus:

2,,2,2 _ 2,.2..2
Yod B” = o x

I
<

2,02y _ 2raria 12 4 a2 o a2
+B,+B7) = Y, (BB )" + 817 + By

Y§(3;+Bo)2 + (B'Z-Biz). Therefore
2 2

p'? = 4?6?82 = a8 /807 + v 21-ar?)

In like fashion, one obtains from (8.8) the inverse transformation
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ay = v, (a,-(B /8))/YD (3)
al! = ay/yoD
al=a/vD D= ((ao-(B/8)) oy 2(1-a2))®

Since D' = d'B/B' and D = dB'/B , we see from (8.5) that
(v, (v D) =1 (4)

By differentiating the first equation of (2), with B' = IV'[ fixed, we

obtain

2..3
1 - tat '
dax/da:x (1+p ax)/YoD (5)
a relation required in transforming differential cross sections.
For an immaterial particle, we have B = 1 = B', D' =d' =1 + Boa;,
and (2), (5) become simply
= ! t
B = Yo (alB.) /v d 6)
a = g°' dr
y = 3/
= at [ r = ' =
a, az/yod d 1+ Boax (m=0)
da_/da! = 1/y%d+? (m=0) %)
x TTx o

The vector form of the ¥, ¥' transformation on parallel axes A, A!

appears from (8.16) to be



-85-

¥ o= (r D)LY LS (¥TeY )ey o' I ], o' = B /8 (8)
: 2 -2 2%
D' = {[ (Y'Y )*p" 174y T [1- (¥ ¥ )71} = d'a/B!
d' = 1 + BOB'(W'-WO)
Setting B = B' = 1 gives the transformation for an immaterial particle:
Y = (yodv)-l[yn+{5o(wv.wo)+y030}wo] (9)
d* =1+ BO(W'°WO) (m=0)

10. Transformation of the energy 4-vector (cP,E). We have seen in 88

that the kinematics of the Lorentz transformation, together with the assumption

of rest mass invariance, implies the energy transformation

E=E'yd', d' = (1+BOB;) (1)

for a material particle. Since the energy of an immaterial particle is an
independent parameter, it is clear that no such transformation can be derived
from the space-time Lorentz transformation, and we shall take (1) as axiomatic
for all particles (which implies the invariance m = m' for material particles
in view of (8.12)).

If we now observe that cP = ¢p ¥ = ERY = EV, then (1) and the V, V!
transformation (8.7) yield the transformation for the energy 4-vector (cP,E)
v (cP',E'), which is not only linear, but has the same matrix as the Lorentz

transformation itself, namely
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= ,cP
cp, = Y, (cp!+B E') (2,cPE)
cp. = ¢p!
Py = Py
cpz = cp;
E =

Yo (B,CPL+E")

on standard axes S, S'. For example, ep, = EBx = E'Yod'Bx = E'YO(B;+80)

= yo(cpi+BoE'), and E = E'yod' = E'Yo(BoB§+l) = YO(Bocp§+E').

Referring to (5.5) and (5.6), we see that

ep)? - B® = (epn)? - B2 (3)

cp<Eand E>O0 iff ¢p'< E' and E' > 0 4

From these we may infer the invariance of proper energy

and the preservation under (2) of the validity condition (1.3) which reads

E>0 and (cP)2 = E2 . &2

in terms of energy parameters (cP,E,e).

The vector form of (2) on the axis A, A' is of course

cP

cP! + {5o(°P'°w§)+YbBoE'}Wo’ § =y -1 (5,cPE)

tT
1

Yo{Bo(cP"?6)+E'}

(e
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With V. = B ¥ , this becomes
0 oo
= = 2
= ' te 1 =
cP = ¢cP +{Po(cP Vo)+YOE }Vo, Fo Yo/(yo+1) (6)
- IR, [
E = Yo{(cP Vo)+E }
Since cP = ¢p¥, cP' = ¢p'¥Y', the direction transformation (9.2) may

be derived more simply from the first three equations of (2). In fact, we

find
2, =Y, (ai+p')/ (ep/cp') (7
a, = as/(cp/ep')
a, = a)/(ep/ep')

where o' = BE'/cp' = B /8" ' (8)

Moreover cp/cp' may be evaluated from (2), since

2 2 2 2 2 2 2 2
Cp = cp, + CPY Tep, = YO(CPi+BoE') * CP; + CP;
= Yi cp'z(ai+p')2 + cp'z(l-aiz). Hence we have
ep/ept = Y D', D' = {(al+p") ey “Z(1-a1H)})" )
o °’ X o] X

Comparison with (9.2) shows that necessarily

cp/ept = Yo(d'B/B')
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a relation which is clear on the simpler grounds

cp/ep' = EB/E'R!

(E'v d')B/E'B' = v d'B/B'  (cf. (1)).

1}

The special case e = 0, B! 1 of (7-9) has been given in (9.6).
These results, and other consequences of the (cPE) transformation
are collected in §13, where their significance becomes more apparent in

a geometric setting.

Note 1. If (cpi’Ei) 4y (cPi,Ei), i=1, .. . , I under the (cPE)
transformation, then formally, (ZcPi,ZEi) 3y (ZcPi,ZEi) also, by virtue of its
linearity. Moreover, we know (cP)2 - E2 = (cP')2 - E'2 for any such corre-
sponding pair. It follows that not only are all the (cPi)2 - Ez invariant

but (ZcPi)2 - (ZEi)2 as well. In particular, when I = 2, we have the iden-

. 2 2 _ 2 2 2 2
tity (cPl+cP2) - (E1+E2) = (cPl) - E1 + (ch) - E2 + 2(cP1 ch-ElEz),
and conclude that cP1°cP2 - EIEZ is an invariant also. For example, to

obtain the energy Ei of a particle 1, in the rest frame L' of a second ma-
terial particle 2, these having known parameters cPi, Ei in Z, one need only

note that, since cPé = 0 and Eé = e, in Z', one must have

cP. cP, - E,E, =0 - E! e so that

1 = -
E1 (E1E2 cPlcPZ)/e2

The whole story may of course be obtained from the inverse (cPE) trans-

formation, with the parameters

Y, = Ez/e2 Bo = cpz/E2 Wo = ch/cp2 .
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Note 2. The relativistic invariants

2 2

R™ - ¢ t2 and (cP)Z—E2

involve the same parameters as the Heisenberg uncertainty principles

| AR

AP| = h/2m = AtAE

For the significance of this, and the invariance status of the principles

in relativistic quantum mechanics, I have no reference.

Note 3. The transformation (2) provides an easy method of finding the
energy and direction in X, From E = Yo(BocP;+E')’ one can obtain

L
cp = (Ez—ez)2 and hence ¥ = (cpx/cp, cpy/cp, cpz/cp).

11. The force transformation. Let (R(t),t) ¥ (R'(t'),t') be the corresponding

trajectories of a particle in the frames Z, Z'. On the parallel axis A, A’

we have from (10.6) and (5.8)

cP

il

cP' + {PO(CP'-VO)+YOE'}VO D)

~
1]

Yo{(Rv.vo)+T|}

By definition, we have for the force in X',

F' = dP'/dt' = d(cP')/dT" (2)

while for the corresponding force in I,

F = d(cP)/dt = (d(cP)/dt')/(dt/dT") (3)
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where

dr/dt' = Yo{(V'°Vo)+l} = Y d' 4)

Finally, we see from (1.6) applied in I' that

1 -1

dE'/dT' = ¢~ dE'/dt' = c "F'eV' = F'+{? (5)

Combining all these results gives the vector form of the force transformation

on the axes A, A',

e 7]
i

-1 o ' ~
= (Y,d') 7 [F'+{T_(F'=V )+y (F'-V')}V ] (6)
d' =1+ (V'+V ) T o= v/ (y +1)
o’’ o o' “o
Note 1. A remarkable consequence of (6) is the transformation to X of a

central force in X'. Suppose at the event (R',T') in I' a particle is sub-

ject to the central force

F' = K'AR'/[MR'|® = C'AR'; k' 7 0 comstant )

where AR!

m

R' - Ré, and Ré is fixed in Z'. If Z' moves with constant

velocity V0 in I, the force in L is seen to be

F = C'y [dAR'+{dl (AR'<V )+y d(V'-AR")}V ] ®)

using the relation (Yod')(yod) = 1 of (8.5).




-91-

Our object is to write (8) entirely in terms of X variables. To

this end, we consider two corresponding events

R, v R',T") R,>T) v R,T)

where Ré is constant, and R, Ro are the Z-positions of the particle and

the force center observed at the same time in X. For these two events, we

have from the inverse of (5.8)

' o7 Yo ¥
R R + {FO(R vo) YOT}VO

P
o—
i

Ro * {Fo(Ro.vo)_YoT}vo
and therefore

AR' = AR + {ro(AR-VO)}VO (9)

where AR = R - Ro at T in Z.

Substitution of (9) for the first AR' in (8) gives
- 1 oy -o v
F = C'y [dAR+{dT ((AR+AR')-V )+y d (V! AR I ] (10)

We reach our goal by showing that the scalar S in brackets here is

actually

S = V.AR (11)

From the inverse of (8.17) we obtain
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cyod)v' =V + {ro(v-vo)-yo}vo .
Hence it follows from (9) that the last term of S may be written
Ve (AR+1‘0 (AR°V0)V0) + {I‘o (v-vo)-yo}(AR'-vo)
= Ve ! o_ -o— - 'o—
VeAR + Po((AR+AR ) VO)(V VO) YO(AR Vo)
Thus for (11) it will suffice to prove
dI‘o((AR+AR')-Vo) + I‘o((AR+AR')-VO) (V-Vo) - YO(AR'-VO) =0
But d = 1 - (V'Vo), so this is equivalent to
1t} eV = 1eV
FO(AR+AR ) V0 YO(AR Vo)
or
Y, = - 1aV
(AR ) = (v -T ) (&R'-V )
. 2
Since Fo = Yo/(yo+1), we have to show

Y, (AR*V )

i

(AR .\70)

or using (9),

v - .- ._ —2
Y ARV ) = AR-V + T_(AR*V )7
2
i.e (y_-1) (AR-V ) = IQ——’(AR-V )82
T Yo o Y°+1 o’ o
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and this is clear since (Yg—l) = Yisg.

Thus (11) is established, and (10) reads

o]
]

C'y [(1-V+V )AR+ (V-AR)V ]

C'y, [AR= (V+V )R+ (V+AR)V ]

C'y, [AR+ (Vx(V_xAR))]

We conclude that a particle at (R',Tt') in Z', subject to a central

force F' = K'AR'/IAR'[S, AR' = R' - RL, Ré fixed in Z', appears in I to be

subject to a force

K'y
F = 0

i |AR!

I 3 [AR+Vx (\_/oxAR) ] (12)

AR' = AR + T_(AR*V )V
o] (o] o]

AR = R - Ro being the Z vector from center of force to particle when both
are observed simultaneously in Z.

Although relativity does not recognize an instantaneously transmitted
force, two approximate cases are of interest.

(a) If q, is a fixed charge at Ré in X', and the particle at (R',T')

has charge q, then K' = qaq, in Coulomb's law, and the I force would appear as
aq,, _
F = Yo[ 3 AR+qVxH] (13)
|aR" |
where H = qOVo X AR/IAR'I3 (14)
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If we take Y, = 1 and AR' = AR, it is apparent that the first term
in (13) represents the Coulomb force, while the second is the Lorentz force
on q at (R,T) due to its velocity V in a magnetic field H. Moreover, the
equation for H in (14) expresses the Biot-Savart law for the magnetic field
at (R,T) due to the charge q, with velocity Vo at (RO,T).

(b) If m, is a mass fixed at Ré in I', and the particle at (R',T')
has mass M', then K' = —GM'mo in Newton's law. Moreover, transformation of

mass from Z' to I involves

M' = M(Yod) m, = MO/Y0

Hence the gravitational force in I' appears in Z as

GMM
yo—2— [AR+Vx (V_xAR) ]

F = -y_(1-V-V
° | AR |

o
in curious analogy to the result for Coulomb force. This aspect of gravity
does not seem to have been explored. It may be noted that the second part
of the force lies in the plane of V0 and R - Ro, and would tend to produce

rotation of M about Mo'

12. Energy transformation and Doppler effect. We consider here the corre-

sponding trajectories of an immaterial particle, as they appear on standard
axes S, S' in the frames &, I' (Fig. 5.1). According to (10.1) the (postulated)

law of transformation for the energy of such a particle is

= ' =
E = E'y d', d" =1+8ar (1)
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. . . . . - N T ' oot gt
while its direction transformation ¥ (ax,ay,az)s b4 (ax,ay, z)S'

is given by (9.6) as

- 1]
a, —‘Yo(ai+80)/Yod (2)
a = a' d'
y y/Yo
= gt '
a, az/yod

Assuming h invariant, and remembering the relations E = hv, X = ¢/v

(m=0), we obtain from (1) the wave length transformation
= ' ]
A= N/ (148 al) 3

which expresses the '"relativistic Doppler effect.'

For example, a photon of energy E' and direction ¥' = (0,1,0)5.
in Z' appears in I with energy E = E'Yo > E', and direction ¥ = (BO,YSI,O)S,
its wave length being A = A'/Yo < A' (Transverse Doppler effect).

On the other hand, if its direction in L' is ¥' = (—1,0,0)3, opposite -
to the direction of X' in Z, we have the situation of a receding source, of

great importance in astronomy, and we find that in I
= ' - [] - ' '
E=E'v Q Bo) <E', A=2A Y0(1+Bo) > A 4)
the direction being of course Y = (—1,0,0)3.

The accompanying '"red shift'" is seen to be

1+

25 (AAD/A = Y (1B )1 = (D - 1 =8 + 58
o

+e.00 (5




]
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If a source at 0' in I' emits a ray of N' such photons per sec and
hence an energy E' = N'E' erg/sec, it follows from (4) and (6.7) that

the rate of arrival of energy at O in I is
a 2 2 _
E = E'v (1-B))" = E'(1-B)/(1+8 ) < E' erg/sec (6

independent of the distance to the source.

Note 1. (Flux-now/distance-now relation.) Suppose a distant isotropic source
of photons at 0' in its own rest frame I', moving with constant velocity
Vo = (vo,O,O)S in ¥, is emitting a constant number N' of photons/sec, each

of energy E', its (rest) luminosity being L' = N'E'. Such photons, emitted

at time t' in I', appear in I at
= t', t =1y t'

X YoBo ¢ ? Yo
and are received at 0 in I at time

T=t+ x/c = Yo(1+80)t'

(c£.(6.6)). The I event of arrival (0,T) corresponds to a %' event

(X',T') where
Xt = - YoBo cT (7N

The I' numerical flux at this distance from the fixed source at 0' is

N'/4ﬂX'2. Now if A is the area of the detector at 0, perpendicular to the
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motion, then the corresponding area in L' at the event of reception is
A' = A, The number of photons/sec leaving 0' in an essentially parallel
beam so as to hit A' is (N'/4ﬁX'2)A', and by (6.7), the number/sec received

at 0 in Z is (N'/4ﬂX'2)A'-Yo(1-Bo). Dividing by A = A' gives
2 2
(N*/4mX? )Yo(l—Bo) photons/sec cm

received at 0, each photon carrying the diminished energy E = E'Yo°(1-80),

by (4). Hence the energy flux detected at (0,T) is the product
¢ = (L'/4nX'2)Y§(1-BO)2 erg/sec cm? (8)

But at time T in Z, the source will be at a distance 4 = BocT = -y X'

by (7), whence
Xt = -y 4
Thus from (8) we obtain
¢ = (L'/41r42)(1-80)2 erg/sec cm2 (9)

for the energy flux arriving at O when the receding source is at distance g

from 0, the observed photons exhibiting a Doppler red shift

1+8_ %
_ 0
z = (Ijggi - 1.
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Solving the latter equation for Bo shows that
1-8 =2/(1+0), ¢ = (+z)’ (10)
Hence (9) can be written in the form
o = L/(ums?) F+D)?) erg/sec(ipe)’ (1)

where 4 is in Mpc.
Defining the corresponding apparent and absolute magnitudes m, M

in the usual way (4.12) we find that
m=M3#+ 25 -5 1log 2 + 5 log 4(1+T), ;E(1+z)2 (12)

with 4 in Mpc. This relates the observables m, z, with the absolute

magnitude M and the distance 4 of the source at the time of observation.

Note 2. (Hubble's Law and the red shift) As noted in 84, Hubble's law
states that light from galaxies at distances 4 << § = 3000 Mpc exhibits a red

shift
z = 48/S
where S = ¢/H, and H is Hubble's constant

H=3.24 x 108 sec™ = 100 (Km/sec)/Mpc
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If due to radial recession, then for small z, (5) shows that

z =B i
whence

8/S = z = Bo = vo/c (13)
and

/v, = S/c=1/H=10"0Y (14)

a time common to all "nearby'" galaxies. This is roughly the basis for the

''big bang' cosmology. Note the significance of units in the relation

v, = Hs, H = 100 (km/sec)/Mpc, (8<<8)

with 4 in Mpc. (For 4=S, vo=c, a poor reason for calling S the radius

of the observable universe.)
Note 3. (The function m(z) for small z.) Under the assumption 4 = Sz,
S = 3000 Mpc, the apparent magnitude formula (12) becomes

m=M+ 40.88 + 5(log €){Lnz+ln(1+g)}, <[ = (1+z)2. (15)

Introducing the variable w = log kz, k = 3 x 10s as in 84, it is easy to

verify that

dm/dw = 5{1 + z§£%:§lQZ§, dm/dw -+ 5 as z > 0

2 _ 10z(1+2z+5) 0, dzm/dwz +~0asz >0

2
dm/a = Tog &) (1vg)2 =
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The limits agree with the observations, but the inequalities are both
reversed from those of §4.
Under the alternative assumption 4 = SBO in (13), the magnitude (12)

reads

m=M+ 40.88 + 5(log €) (£n(g-1)) (16)

which has the same slope properties as (15).

13. The momentum ellipsoeid. We saw in 810 that corresponding momenta are

related by the transformation

= 1 ' - ' = 1
Chy Yo(QPX+BOE ) CPY CPY tp, = ¢p, (1)
when cP = ¢cp ¥, cP' = ¢p'¥' are referred to standard axes S, S!'.

This may be visualized geometrically in the following way. For a given cP',
construct on axes S' the auxiliary point Q' = (X',Y',Z')S, as indicated in

Fig. 1, with

X' =y, epy =y (ept cos ¥y = (v  ep') cos P!, (2)
- ' - '
Y cpy, Z cp,
Since (x'/ﬁ(o)2 f Y2 o z0? 2 cp)‘(z + cp)',z + cp;z, it is clear that, when

cP' ranges over a sphere of fixed radius cp’, the point Q' will range over

the ellipsoid of revolution

&) x%/0v, epy? + ¥ ep? v 2% jep? =1 (3)
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If we now set up, with parallel axes S, a space for cP, with origin
Oi = (-YOBOE',O,O)S,, the point Q', referred to the axes S, has the coordinates
required of cP in (1), and hence the vector OiQ‘ represents the vector cP

corresponding to cP'. Note from the figure the obvious relation
ep/ep' = sin ¥'/sin ¥ (4)

In the mechanics of scattering of a particle with fixed energy parameters
(cP',E',e) in a frame I', the corresponding I parameters may of course be ob-
tained directly from (10.2). But it is also important to have formulas re-
lating c¢p and a = cos Y with the angley' in X', as exhibited in Fig. 1.
Moreover, the I magnitude cp as an explicit function of as and ai as a
function of a  are sometimes required. These formulas we derive now.

We first recall from §10 the equations (9), (8), (7):

- L
ep = ep'v D', D' = {Gapren)? ¢ v P(1-ayP)) (5)
where
p' = BOE'/Cp' = BO/B' (6)
a_ =y, (ay+p')/(ep/ep') = ¥ (ai+p')/Y D! (7

These relations allow computation of cp, a_ as functions of ai.

Letting R = cp/cp' temporarily, (5) and (7) may be written as

2

ol
n

2 ' | 2 1
Yolapte')” + 1 - al

o
o
1

= 1 1
Yo (aytP')
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- , ; ; Yo
% BoE' 0 S cp’  wep

Fig. 1.
The Momentum Ellipsoid Construction

Case I.
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From these two equations we may eliminate a; to obtain
2. 2,,2 2
! - - - 1 _nt -
(vy/0') (1-85a IR - 2a R - (v /p') (1-p'") = 0
Solving for R shows that ¢p as a function of a, is

L
ep = cp'ep'{a +(a2+K)?}/y (1-82a2) (8)
where

_ .2 22, .1
K=v,(1-Ba, (-77- D (%)
p
Note here that cp'*p' = cp'-(BoE'/cp') = BOE'.
It is now easy to obtain a; as a function of a from the above equation

a,R =y (a,*p') since Ris already known from (8). In fact

2 L
-1 +a, [axiﬁax+K)2]

' = 1
a i =p (10)

2 2 2
Y0(1-80 )

In computations where only the k.e. k' is known in L', one should
recall the relations of 81 for a material particle:

-2)%

Y= 1+ (K'/e), 8= (1-y'"DF, B'=yle, cp' = E'B.

1
To obtain k from cp in I, one may use the equations k = e(y-1), y = {1+(9§92}2.
For an immaterial particle we have simply cp' = k', k = ¢p.

It is clear from Fig. 1 that, as ' varies in any plane from 0° to 1800,

the behavior of y will depend on the position of Oi relative to the ellipsoid
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E, as indicated by the value of the fundamental ratio
' = t = ! - 1 1
pt = B /B' = B E'/ep' = vy BE'/Y ep

There are three essentially different cases, each with its individual

implications for the basic scattering formulas (5-10).

Case I. p' <1 (K>0, BO<B', Oi is inside E) ¢ ranges from 0° to 1800,
with 1 Z_ax > -1. The (+) sign is mandatory in (8) and (10), cp being uniquely,
determined by a.

Under this case falls the behavior of an immaterial particle with

B' = 1. Since photon scattering is important, we list the related formulas
' =
for p Bo
= ' t t = ' = 1
cp = ep YOD s D 1+ Boax d an
= ] [}
a, = Y (a +B8 )/v D
cp =y, ep'/(1-8 a)
0 0 X
[ - - -
2% (ax Bo)/(1 Boax)

Case II. p' =1 (K=0, B°=B', Oi is on E). Y ranges from 0° to 90°
with 3 >a, >0. The (+) sign in (8) and (10) is again required, cp being a
single valued function of a. In this very special case, the scattering

formulas are

ep = ep'y D', D' = {(1+a))[2-82(1-a1) 1} (12)
a, = {(1+a))/[2-82(1-a1) 1}
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ep = ep' (22 )/, (1-82a2)

-1+ [282/¥2(1-82a0)]

[\
W o=
il

Case III. p' > 1 (K<O0, BO>B', 0] outside E). ¥ ranges from 0°

to a maximum ¥ (opening of the tangent cone), and then back to 0°. Thus
z_ax = cos Y, and both signs are required in (8) and (10), cp being

a double valued function of a_ . Each angle ¥ < ¥ arrives from two distinct

1 >a
— X

values of y', and therefore appears with two different values of ¢p. The

limiting tangential value ¥ is attained when ai + K =0 in (8), and hence

; = cos & = {(p'z-l)/(p'z- 82

SR B >
< D1 = 111/ (' -1} (13)

Using the first of these values, it appears that

Y2(1-82a2) = 0%/ (01282 14

so from (8), (13), (14) we have the corresponding value

~ Pty L
ep = == {(p'2-1) (0 2-82) 1 (15)

Similarly from (10), (13), (14) it follows that

ay = cos y' = -1/p" (16)

for the associated angle in I'. Figure 2 shows a case of this kind.
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Fig. 2.
The Momentum Ellipsoid
Case III.
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Note 1. (Geometry of the ellipse) The ellipse of Fig. 1 is of form

x2a% + Pl =1 (b<a) (17)
where

a=y, ep! b = ¢p!' (18)
and therefore has eccentricity

€ = {1-(b/a)2}1/2 = Bo <1 (19)
The distance from center to focus is given by

f = ae = Y, 8, ¢p' (20)

i TRt = 1 10! = 1 L 3 !
Since E'B cp', we see that 010 YOBOE Z'YOBOCP £, so the point 01
always lies to the left of the left focus, coinciding with it iff B' =1
(immaterial particle).

In general, the ellipse (17) may be regarded as the locus of a point

which maintains the fixed ratio € between its distance from the left focus

and a vertical line (directrix) at distance
-2
§ = b"/ae (21)

left of focus. With the focus as origin, the ellipse (17) has the polar

form p/(8+p cos 6) = €

p = 8e/(1-€ cos 8) (22)
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In the momentum ellipsoid we have

§ = cp'/YOBO (23)

and the polar form reads

- -1 ' - g
p =y, ep/0 Bo cos 6) (24)

For the special case of an immaterial particle just referred to, Oi coincides
with the left focus, and hence ¢p with ¢ and ¥ with 6. Thus the ellipse has

the equation
cp = Y;I ep'/(1-8_ cos ¥) (25)

where ¢p = E, ¢p' = E'. This may be compared with the formula for cp in (11c).

Note 2. Since the (R,T) and (cP,E) transformations are identical, all the
relations of this section may be applied to the corresponding events (R,T) "
(R',T') with the obvious substitutions. In particular, for a particle
undergoing the displacements (R,T) "~ (R',T') with energy parameters (cP,E)

~  (cP',E'), the two figures are similar, since a/b = (Yo ep')/ep' = (Yor']/r',

and
010" /b = (1B, )/eR" = ¥ Bo/8" = (1,8,T)/x"

Hence all directions and angles in the two figures are identical. In particular

we have from (4) the relation

cp/ep! = sin Y'/sin P = /1! (26)
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This is also clear analytically. 1In fact,

ep/ep! EB/E'B' = (E'Yod')B/E'B' = Yod'(r/T)/(r'/T')

(r/r')°(yod'T'/T) = r/r', since

T = Yo (Bx'+1') = vy 1" (B (x'/1')+1) = y T' (B By+1) = vy T' d'.

Note 3. The three cases I, II, and III may also be distinguished by the

2 < 2 _ .2 2 <
gep' =E' -e or Yoe s E!

inequalities 85 E!
Note 4. Equation (8) gives ¢p as a function of a s double-valued in Case III
(p'>1). Its always single valued inverse, expressing a_ in terms of ¢p, can

be obtained very simply from the original (cPE) transformation (10.2) thus.

By eliminating Bo cpi from the equations

ep, = ¥, (epi+B E")

tm
It

Y, (B, cpl+E")

. -1
one obtains E - 60 cpx = Y, E', or
a_= (E-y.  E')/B_cp (27)
X 0 0
L
where E = (cp2+e2)2. Indeed if one introduces the parameter p! = BOE'/cp'

in place of E' in (27) and notes that ez/cp'2 = -1 + (p'z/Bg) solution for
R = ¢p/cp' leads to the quadratic from which (8) was obtained. Also, if we
specialize (27) to the case e = 0, E' = ¢p', E = cp, we obtain again the

polar equation (25).
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Example 1. A frame Z' moves with speed 3c/5 in L. A particle of
rest energy 3 and k.e. 2 in I' is traveling at an angle of 60° from standard

axis OX'. One may find its I parameters cp, a, from (5-7) as follows.

k' = 2, E' = 5,¢ep' = 4, p' = 3/4 (Case I. Yocp' =5, YOBOE' = 15/4), ai =

D' v817/20

cp

v817/4 a_ = 25/v817 . The relations are shown in Fig. 3.

Fig. 3. An Example
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A check is provided by formulas (8-10). It may be noted that the

same results may be obtained directly thus:

E = Yo(Bocp' cos P' + E') = 31/4
1.
ep = (E2-e2)2 = v817/4
ep, = Yo (ep' cos y' + B E') = 25/4
a =cp/ep = 25/v817
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Chapter 11

CLASSES OF SYSTEMS .

14. Systems of particles. A system S = S(el,...,eI) in a frame L

is a set of I triads (cPi,Ei,ei) of constant, valid energy parameters
(Ei>0, (cPi]2=Ei—e§) together with a set of linear trajectories Ri =
RO + V.1, - ® < T < o, where Vi = Cpi/Ei’ and T = ct as usual. Thus
the '"mathematical object'" S may be considered to represent a set of I
free physical particles during the time interval of its existence.

The total momentum, energy, proper energy and kinetic energy of

the system are given by
CPS = I cPi E =1IE. e =1Le, k =2Zk.=E -e (1)
The center of mass (CM) of S is defined as the point
R, = L(E,/E)R, (2)

and therefore

V_ = dR_/dT = D(E/E )V, (3)
indicates its velocity. Since E.V, = c¢P., we infer that V. = ZIcP./E
11 1 S 1 s
and hence
CPS = Es MS (4)

A system with all velocities Vi identical we call coherent, immaterial

(with all ei=0) if the common speed is c, material (with all ei>0) if it is less:

e A e
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It is obvious from (3) that the common velocity VC of a coherent

system is that of its (CM):
V =V (5)

Concerning systems, we prove the fundamental

Theorem 1. The totals cPS, ES, e of a system S satisfy the relations
2 2 2
ES > 0 (cPs) < Es - e (6)

Moreover, (cPs)2 = Ei - ez iff S is coherent.

Proof. Clearly Es = ZEi > 0. The polygon and Cauchy inequalities

L
insure that |cP_| < Z|cP.| Z(E?—e?)z
s! = i ivi

D(E;-e,) (B ve)? < (5(E;-e, ) *(E(E; e ))”

3 2 2%
(Es—es) (Es+es) = (ES es) . The known
properties of the cited inequalities show that equality holds between the
above extremes iff both

(a) all cPi (equivalently all Vi) are unidirectional, and

(b) E. - e, = C(E,+e.) for some constant C > 0.
i i i 71 -

Clearly (b) is true iff all ratios ei/Ei are equal. But, for each i,

Ei Vi = (cP)2 = Ei - ei, so (b) is also equivalent to the identity of all
magnitudes IViI. It follows that (cPs)2 = Ez - ei iff all vectors Vi are

identical, i.e., S is coherent.

Corollary 1. For the (CM) of a system S, one has

<
A
[

(7)
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with equality iff S is coherent immaterial.

Proof. From (4) and (6) one finds

g2 72 - (cP )2 <EX.e®<E
S s s — S8 S —

2
s

2

Note 1. That (cPS)2 = Es - ez for a coherent system may be seen directly:

tm
1

(cps)2 - Ei - (ZEch)z - (ZEi)Z(l-Vi)

2 2 2
=2 2 22 2 2
{zsifl-vc} = {Z“Ei'Ech} = {Z/Ei-(cpi) }

{Ze.}z = e2.
i s

15. The class of a system. Since all transmutations A - S conserve the

total momentum and energy of the systems involved, it is convenient to
define the gl§§§_{cP0,Eo} of all systems having the same totals cPo, Eo,
regardless of the number and nature of their individual proper energies e, .
A system A (concurrent at an event (R,t)) being given, its totals cPo, EO
define its class, and the possible systems S which may result from its
transmutation we shall here regard as all those in its class concurrent at
(R,t). The present chapter, which studies the totality of systems in a
given class, is therefore of immediate relevance for Chapter III, which deals
with transmutations as such, stressing the role of the initial system A in
determining the possible outcomes.

For the class parameters cPo, Eo there is first of all the validity
condition of

Theorem 1. A number Eo and vector P0 are possible values for the total

energy and momentum of some system S, and so define a non-empty class

{cPo,Eo}, iff
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2 2
<

Eo >0 and (cPo) __Eo (1)

Proof. (a) If cPo, Eo are the totals for some system S then (1)
follows from Theorem 14.1. (b) Conversely, if (1) holds, then cP , E
may be regarded as totals for any system S(eo) of one particle, with param-
eters (cPo,Eo,eo), its proper energy e, > 0 being defined by the validity
condition

2 2 2
(cPo) = Eo - e (2)

for a particle.

All particle parameters of §1 are then well-defined for such a funda-

mental particle (cPo,Eo,eo), of class {cPo,Eo}, and are denoted throughout

by subscript 0. In particular, its velocity, defined by Eovo = cPo is seen

from (14.4) to be the common (CM) velocity of all systems of its class.
v =V (3)

For reasons which will become obvious, we shall call V° the class

velocity and e the critical ener of the class.
Y o gy

Corollary 1. The class velocity V0 is the common velocity of any
coherent system of class {cPo,Eo}, and the total momentum Po of such a system

is distributed among its particles according to the relation

cP, = E,;V = (E,/E )cP (4)
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Since we have defined the critical energy e, of the clgss {cPO,EO}
by (cPo)2 = Eg - eg, the principal result of Theorem 14.1 may be stated as
Theorem 2. If e, is the total proper mass of a system S of class

{cPO,Eo}, then necessarily

(5)

~

with equality iff S is coherent.

Corollary 2  The coherent systems of a class {cPo,EO} have the greatest
possible total proper energy €. ard hence the least possible total kinetic

energy ks'

Proof. For. k. = E - e , where e < e by Theorem 2,
- s o) s s — o

Theorem 3. All systems S of : given class are determined by the solu-

tions, for the number 1 > 1, and tle particle parameters (cPi,Ei,ei) i=1,

..., I of the conditions

; ) 2 2 2
A. ZcP, = ¢P . = -
c ‘ C { (cPi) Ei ei (6)

B. ZIE, :E D. E, >0 e >0

16. The two kinds of classes. We now have the picture of a class {cPo,Eo}

of systems S, ali with the same totals cPS = cPO, E = Eo. The class contains
systems S(eoj of fundamental particles with parameters (cPo,Eo,eo). All
systems of the class have the same (CM) velocity (VS=VO), namely the velocity
of a fundamental particle. Moreover, every system of the class has total
proper energy e i‘eo, being coherent (all velocities identical with Vo)

iff e =e .
s o
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There is a fundamental distinction between classes with e, = o,
and those with e > 0, containing fundamental particles which can be

brought to rest by a Lorentz transformation. For the first type we have

Theorem 1. (a) A system S(ei) belongs to a class {cPo,Eo} with e, = 0
iff it is coherent immaterial. (b) Every such system has parameters satisfying

the relations
e. =0 E. = f.E cP. = f.cP I>1 (1)
i i~ o

where all fi > 0 and Zfi =1. (¢) If {cPo,Eo} is a given class with e, = o0,
it contains a (coherent immaterial) system S(ei) of any arbitrary number

I > 1 of proper energies e, = 0.

Proof. (a) If Se{cP ,E } with e =0, then e_ < e implies e_ = 0
—_— o’"o o s— o s
(S immaterial) and e, = e, (S coherent). Conversely, if S is coherent im-
material, and {cPO,Eo} is its class, then e, = e, since S is coherent, and
e, = 0 since e = 0. (b) By Corollary 15.1, a coherent system of class
{cPo,Eo} must have cP, = (E;/E )cP . Hence (b) follows if we define

f.1 = Ei/Eo' (¢} Such a system may be defined by the relations

cP, = £, cP e. =0
i i i
E. = f. E i=1, 51
i io
where the fi are arbitrary with fi > 0, Zfi = 1. These parameters obviously
satisfy Theorem 15.3. Note that (cPo)2 = Eg - 02.

Theorem 2. (a) A system S is coherent material iff it belongs to

a class {cPo,Eo} with e, > 0 and has e, = e . (b) The parameters of such a
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system satisfy the relations :
> = = >
e; 0 Ei (ei/eo)Eo cPi (ei/eojcP0 I>1 (2)

=e . is i i > >0
where Le, = e . (c) If {cPO,Eo} is a given class with e > 0, and e,
are any I > 1 given rest energies of sum €, then the class contains a

(coherent material) system S(ei) with the given I rest energies e

Proof. (a) If Se{cP ,E } with e > 0 and has e = e then S is
— 0’0 o s o}
coherent since eS = e , and material since e0 > 0. Conversely, if S is
coherent material, and {cPo,EO} is its class, then es =e, since S is
coherent, and €, > 0 since € > 0. {b) By Corollary 15.1, a coherent
system has cPi = (Ei/EO)cPO, Since & is material, with the common velocity

- / = %
Vo’ we have Ei/Eo yoei,ZYoei ei/eo, and (b) follows. (c) Such a system

may be defined by setting

/ i
cPi (ej,eO)cPO i 1, . . ., I.

try
]

(eifeOJE0
These parameters satisfy Theorem 15.3. Note that

, 2 2 . 2.2 2 . 2 2
{ / = - = -
“ei’eo) (Cpo) |‘eix/eo) (Eo eo) ((ei/eoJEoJ i

)

2
(cPi)

Summarizing, we have identified the coherent immaterial systems as
the entire contents of the classes wit} e, = 0, and the material ones as those
particular systems of the classes with “o > 0 which have the maximal total propel

energy e,- Every remaining system is therefore a non-coherent member of a
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class with e, > 0, and consists of at least two particles of total proper
energy e_ < e, - The following sections show that every class with e, >0
does indeed contain systems S(ei) of any I > 2 prescribed proper energies

e. > 0 of sum Ze. < e_.
i— i o

17. The L' frame of a class. If L' is a frame moving with any constant

velocity Vo (IVOI < ¢) in I, then a free particle with (constant) parameters
(cPi,Ei,ei) in I appears in L' as a free particle with parameters (cPi,Ei,ei),

where

i
E!'l o E : (1)

and L0 is the Lorentz matrix of §§85,10. Hence a system S in Z with totals

cpo,Eo appears in X' as a system S' with totals cPé,Eé uniquely defined by

cPé -1 cP°
gl Lo E (2)
o o

It follows that a class of systems all with the same totals, appears as a

class of systems in L' with the same totals cPé,E&, i.e.,
{cPo,Eo} v {cpé,Eé} (3)
Moreover, we know from (2) and 8§10 that
2 2

2 2 _ . .
(cPo) - Eo = (cPo) - Eo

and therefore the critical energy e, is the same for corresponding classes:




e Ve . (4)
) o
Hence fundamental particles are mapped into fundamental particles with
corresponding energy parameters
(cP ,E ,e } ~ (cP',E',e ) {5)
0’70’ o o’ 0’0

Since e, voe , e, v e and e, = €. is the condition for coherence, we infer

that coherent systems correspond in corresponding classes.

That frame I' which moves in .. with the class velocity V0 of a Z-class

{CPO,EO} of critical energy e, > 0 is called the I' frame of the class. Since
L' is here the rest frame of a fundamental particle of the I class, we have

from (5) the corresponding parameters
V]

(cP,E ,e ) v (0,e ,e ) (6)
for such particles, and for their c:asses, the relation

{ep LE b v {0,e ) (7)
Thus a I system with totals cPO,EO appears in L' as a system of zero total
momentum, and total energy Eé = e its (CM) being at rest.

The parameters Yoo Bo of the Lorentz transformation from I to I' are

those of a fundamental particle (cPC,Eo,eO), namely

= / =
Yo Eo’eo 6o CPO/EO
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18. Systems of zero total momentum. In an arbitrary frame X', the class

{O,eo} (e,>0) of systems S'(ei) with total "momentum" cP! = 0 and total
energy Eé = e has critical energy e, itself, and fundamental particles with
energy parameters (O,eo,eo). All systems of the class are determined by the
conditions of Theorem 15.3, namely

C. (eP1)? = g2 2
1 1 1

|
o

A. I cP! =
i

B. I E!'=c¢ D. E! >0 e. >0 1>1 ¢
1 1 1 - _

We know that those with eS = eo are the coherent ones, here motionless,
with cPi = 0, Ei = ei, while all others must have e < e, and T > 2.

The simplest of these are characterized in the important

Theorem 1. (a) A system S'(el,ez) of class {O,eo} with I = 2

particles, of total proper energy e, = e1 + e, < eo, has the unique energies

2 2 2
1 = -
E} = (e +e] ez)/Zeo (2)
2 2 2
! = -
E2 (e0 el+e2)/2eo

and oppositely directed momenta of equal magnitudes, given by

L
cpj = ()°e))”

The inequality e, +e < e, alone implies that the Ei defined in (2) satisfy

2

e. <E!'<e -e
1 o
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(b) For every e, >0, e, > 0 with e, + ¢

1 2 1 2
S'(el,ez) of class {O,eo}, the Ei being defined as in (2), with the direction

< e, there exists a system

of cP! arbitrary.

1
Proof. (a) From (1A) we have cP1 = —ch so
2 2
' = '
(cPl) (ch)
2 2 _.,2_ 2
Hence by (1C), Ei -8 = E2 e, and
2 2 2 2
1 - 1 = -
El E2 e e, (3)
But (1B) gives
E} +E}=e >0 (4)
and division of (3) by (4) shows that
2 2
1 - ! = -
E] - E} = (e;"-e,")/e, (5)

Solution of the linear system (4,5) then yields the values of E!, Eé in (2).

2 2 2 2
From e * e, < e, follows e, < (eo-el) =e, - 2eoel + S whence
2, 2_ 2 - o - . . . .
e < (eo te, -e, )/2eo = El. Similarly e, < E). Since E] + E) = e,
t = - ' < - 1 = - | -
we have also El e, E2 €, =~ €5 and E2 e, E1 < e, - €;- (Note that

= i i ' = I = i
e1 + e, e0 implies El € E2 e, for a coherent motionless system.)

(b) By the last remark, we see that the E!

1® @s defined by (2), are positive.

Indeed,

E! >e. > 0, i=1,2
i i-—
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so (1D) holds. Also the Ei as defined have sum and difference

E{ +E) = e (6)

tn
1

tr
i

1 2 = (e1z'e22)/eo (7

Thus (1B) holds by (6), and multiplying (6) and (7) gives

Eiz _ Eéz - e12 _ e22
or
2 2% _ .2 2%
(E]“-e, )7 = (B -e,") ©)

Hence two oppositely directed vectors cPl, ch with the common magnitude

(8) satisfy (1A,C), and this completes the proof.

Corollary 1. The system S(el,ez) of Theorem 1 has the kinetic energies

=
|

= 1
1 = kgley+iki) /e, 9)

-
|

= k! 1.1 1
2 ks(e1+2ks)/eo
1 3 ! - = !
satisfying 0 < ki < e, -~ € kS

where e, is the total energy and k; the total k.e. (eo-es) of the system.

Thus the particle of greater proper energy has the greater energy but the

lesser k.e.

Proof, For example, ki = Ei - e, = (e

((eo-el)z-eg)/Zeo = (eo-el-ez)(eo-el+e2)/2eo

(e -e;) (2e,+e -e )/2e = kl(e,+ik!)/e .
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For the existence theorem of the next section, we require the
following generalization of Theorem 1(b).

Theorem 2. If {O,eo} is a given class (eo>0), and e; > 0 are any
I > 2 proper energies of sum Ze, < e , then the class {O,eo} contains a
system S'(el,...,eI).

Proof. Group the given e, in any way (there is at least one!) into
two non-empty disjoint classes {ej}, {ek}, each containing only positive

e;, Or only zero e, - Define
where
By Theorem 1, there exists a two particle system S'(eJ,eK) of class {O,eo},

its parameters satisfying the relations

2
1 1 = 1 =
A. cPJ + cP 0 C. (cPJ) E

-

Since (A), (B) hold, it suffices to produce two systems, S'(ej) of class
{cP',Ej}, and S'(e,) of class {cP',Ek}. By (C), (D) these classes are non-

empty, with critical masses €15 Cps where Zej = Zek = e,. The desired

K €y’ K
systems must therefore be coherent, and their existence is insured by part

(¢) of Theorem 16.1, 16.2.

Note 1. The formulas for the Ei in Theorem 1 (a) may be obtained more simply.

2 2 _ 2 _ 2 _ .2 2 _ _mey2 2
For example Ei = (eP!)” = (cP!)” = Eé - e, = (e0 El) - e,
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19. The main existence theorem. The systems S(ei) which belong to a

IL-class {cPo,Eo} with e, = 0 have been determined as the coherent immaterial
ones of Theorem 16.1.

All systems of a class {cPo,Eo} with e > 0 must have total proper
mass e < e .. Those with e_ = e are characterized as the coherent material
ones of Theorem 16.2. Moreover, the correspondence of 817 provides a one-
one mapping of the systems of this Z-class on those of the class {O,eo}
in the I' frame of the class, and we have seen in Theorem 18.2 that, in
addition to its coherent (motionless) systems, the latter class contains
non-coherent systems S(ei) of any number I > 2 of arbitrarily specified
proper energies e, > 0 of sum Zei < e - These remarks serve to establish

the principal

Theorem 1. Given a Z-class {cPo,Eo} of critical energy e, > 0, and
I > 1 specified proper energies e, > 0 of sum Ze;, = e, then {cPo,Eo} contains

no system S(ei) unless

e_<e (1)
Moreover, (a) if'es = e the class contains a system S(ei) iff all e, >0,

and (b) if e < e s such a system exists iff I > 2.

Note 1. One may now infer the following generalization of the validity con-
dition of 81 for particles:
A number M and vector P are possible values for the total mass and

momentum of some system of specified total proper mass m iff

M>0 and P2 f_cZ(Mz—mi).
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20. Systems of two particles. The results of 8817,18 enable us to state

Theorem 1. All systems S(e,,e,) of Z-class {cPo,Eo} with e, = e, +

e, < e, derive, via the Lorentz transformation, from corresponding systems

S'(el,ez) of class {O,eo} in the I' frame of the class {cPo,Eo}. The latter
have the unique parameters Ei, cpi of 818. The values of Ei’ eps in X vary
only with the direction Wi of cPi in Z'.

This is exactly the kind of variation studied in 813 (for an arbitrary
velocity Vo of X' in X); all the relations of that section apply here to either
particle. Figure 1 shows the ellipsoid construction for both particles of
a two-particle system simultaneously. Note the the ellipsoid is common

to both, since cpi = cpé, but the origins 0!, Oé of momenta cPl, cP, are

2

at distances YoBoEi’ YoBoEé from 0', which are equal iff e1 = e2. Each

particle therefore falls under its own case (I,II,III), and it can be shown

that all 9 combinations are possible. (Note 1.)

By reflecting the construction for the second particle in the origin
0' one can visualize the situation more clearly. Thus the figure displays

i = = ! ! = = =
the necessary relation [cP1+cP2I 8 * &, YoBoEl + YoBoEZ Yosoeo cpo

]cPOI, and the angle of separation o = . + wz of the I trajectories.

1

From the equation cP = Cpl + CPZ’ we obtain cp = C_pl + sz + 2cplcp2

cos O = (cp1+cp2)2 - 4cp1cp2 sinz(c/z) and therefore

Y

sin(0/2) = {(epyrep? - (ep )%} /2ep ep))” (1)

Note l.. Given e, >0 and 0 < Bo < 1, there exists a system S'(el,ez) of
class {O,eo} for which obtains any one of the 3 x 3 = 9 possible combinations

of cases I, II, III for its two particles in the momentum ellipsoid diagram.

In fact, for i = 1, 2, let bi be chosen on (0,1) with each bi satisfying any
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velocity
direction

9i =% BoE; b=cpi  a=%cp

S(e;,e,) ~ S'(e,ep); cpj, E} fixed.

{cPo, Eo} ~ {O,eo}

Fig. 1.
The Two-Particle System




-128-~

VIIA

one of the three inequalities Bo bi independently. Then define

f = ' =
El b2e /(bl+b2) >0, E2 bleo/(b1+b2) >0
e, = E'(l-bz)% >0 ¢p! = b.E! i=1,2
i i i ’ P3 i1 e

One easily verifies the relations

2 2.4 —
= t = | B ' = ! 1 = ! ! =
e, cpi (E.1 e, )5, cpl epys Bi cpi/Ei bi

and the above assertion follows.

Note 2. It is easy to derive the I parameters of a 2-body system S(el,ezj
of class {cPo,Eo} as functions of ¥, without introducing the I' frame of
the class. However, their dependence on the L' angle Wi, is essential

for understanding their behavior under cases I, II, III. For example, from

cP1 + cP2 = cPo, E1 + E2 = Eo follows at once the equations

2 2 2
(ep,)™ = (ep )™ + (epy)” - 2ep cp, cos Y,

E2 = E2 + E2 - 2EOE

2 o 1 1

Subtraction gives

2 2 2
“€p = e, - ey + 2(E0E1-cpocpl cos wl)

or
' = -
E1 yo(E1 Bo cpl cos wl)
. 2 2 2 . . L.
where we have here written Ei = (eo+e1-e2)/2eo simply as an abbreviation.

i....-...-.........-...--.---------IIIIII-----------------
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In reality it is of course the energy of 1 in X' (cf. §18). The last
equation may be put in the form cos wl = (El-Y;IEi)/Bocpl. One may

compare this with Eq. (27) of Note 13.4,

Note 3. We consider here some properties of the I separation angle 0 in

the special case of equal proper energies

We have then for i = 1,2,

- = - 2_2k = - '
E{ = (eo/2), b = cpi = ((eo/Z) -e")% a = Yob = Y, P

. . < s s R
The inequalities p' 1 distinguishing the three cases are here

equivalent to Y, E (eo/Z).

The origins 0!, OS being symmetrically placed, it is geometrically

clear from Fig. 2 and its analogues for cases II and III that the separation

angle o has the following properties.

Case I. (Oi inside E) 0 is least for wi = 900, and greatest

(180°) for vy = 0°, 180°.

Case II. (Oi on E) o is least for wi = 900, and greatest (900) for

Case III. (Oi outside E) 0 is greatest for Wi = 900, and least

0%y for v = 0%, 180°.

A

In all three cases, we have for the extremal angle 0 occurring at

_ (%]
Uy = %0°,
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Fig. 2.

The Case e; = e, (Case I)

g =vB,(e,/2), b= cpi, a = Y cp!
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sin(9/2) = b/ ®2g)% = 1/ 1+ @/0)D* = 17+ 0y ) 2)

since g/b = (g/a)(a/b) = p'y_.

o
e 2 e 2

: 2_.2_ 2_ % 2, 2,2.%.

Moreover, in I we see that ep; = b™ + g° = ( 3) - e + YOBO( 2)
e 2
2.70 2 .
Yo (=) -, ie.,
e 2 L E 2 L
_ 2.0 2 _ __0_ 2 '=O
ep, = {Yo(—§9 -e = (¢ 2) -e) (wl 907) (3)

Of geometric interest under Case I is the system of two photons
(eEO,p'=BO<1). Since both origins 0!, 03 are at the foci (8§13) we see
that g = £ = ae = aBo, and it follows from the "string property" of the
ellipse that there prevails a constant sum Cpl + ep, = 2a. Hence from (1),
we have for all y°',

1 1
Y 4

L E
sin 3= (a%-g%) %/ (epyep)? = a(1-82)/ (ep ep,)

av;'/ (epyep)® = epy/ (epyep)® = EY/ (BB = (o /2)/ (BiE))*

| v

(e,/2)/ ((E;*E;)/2) = e /E = 1/y = sin = . (4)

The final inequality is a trivial special case of the arithmetic-geometric-
mean relation,

Another instance arises in the elastic scattering of a projectile on
a target of equal rest mass at rest in Z (cf. §30). For the L' frame of
the class, the appropriate figure falls under Case II, with both Oi on the
ellipsoid. In such a case, p' = 1, and (2) gives for the minimum angle of

separation for the scattered projectile and recoil target directions
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sin(g/Z) = 1/(1+Y§)li (3
or

cos (a) = (vo-1)/ (Yo+1) (6)

Example 1. The I class {cPo=(1,2,2)A,E°=5} has fundamental particle
parameters cp_ = 3, Wo = (1/3,2/3,2/3)A, Eo = 5, e, = 4, Y, = 5/4, Bo = 3/5.

It contains no system S(el,ez) with e, = 2, e, = 3, and none with e, = 0,

1 2 1

e, = 4, Aside from trajectory origin, it contains exactly one such system

with e, = 1, e, = 3. This is coherent material, with E

cP, = 3/4Y¥ , cP, = 9/4¥ .

The systems S(e;,e,) with e, = 0, e, = 2 of the above class all derive

= 5/4, E_ = 15/4,

1 2

from the corresponding systems S'(el,ez) of class {0,4} in the Z' frame of
the class. For S' we necessarily have Ei = 3/2, Eé = 5/2, and Cpi = 3/2.

In the ellipsoid figure, pi = 3/5 = Bo, pé = 1 imply Oi at the left focus and
05 on the ellipse (Cases I and II). If we specify the direction Wi = (2/3,

2/3,1/3)A, of e in Z', we obtain from the vector form (10.5)

cP1 = (107,142,106)/72, ch = (-35,2,38)/72 on A,

E1 = 23/8 E, = 17/8

Ck: cP, + ¢cP, =cP, E,  +E  =E

21. Systems of many particles. All systems S'(ei) with I > 2 specified
proper energies e, > 0 of sum e < e, which belong to a class {O,eo} of an

arbitrary frame I', are determined from the conditions of Theorem 15.3,
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A. ZcP! =0 C. (cP!)™ =E!" - e?
i i i i

B. ZE! = e D. E' >0
i i

The existence of such a system, consisting of two coherent sub-
systems, was proved in Theorem 18.2. Interpreting that result, with Z°
regarded as the X' frame of a class, we obtained a corresponding existence
theorem for an arbitrary class {cPo,Eo} of Z. (Theorem 19.1(b)) We now
exploit the latter result to clarify the nature of those systems S'(ei)
of {O,eo} with I > 3 particles. These lack the uniqueness properties of
the two particle systems described in 8§18, and we shall determine completely
the energy ranges permitted for their particles. This in turn has immediate
but complicated implications for an arbitrary class of the same critical

energy, which will be mentioned only briefly in a later application (833).

Theorem 1. Let S'(el,...,eI) be a system of class {O,eo}, e, > 0, with

. I
> > = <
I > 3 proper energies e > 0, of sum e Zl e, < e, Let e be any one
of the e and define eK = Z; e;- Then there exists a two particle system

S'(el,eK) of class {O,eo}, in which e has the unique energy

2 2
+e1—eK)/2eo
with

e, < Ej <e -e (1)

Moreover, the energy Ei of e in S'(ei) necessarily lies on the range

| A
23]
G-

(2)

[u—
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Equality holds (a) on the left iff e > 0 and the residual system

R = S'(e2,...,eI) is of class {O,eo-el}, (b) on the right iff R is coherent.

Proof. The existence of S'(el,eK), and relation (1) follow from

Theorem 18.1, since e, + e = e < e, - The residual system has the totals
Z; cPi = -cPi, Z; E! = e, - Ei, Z; e; = ey

It therefore follows from Theorem 14.1 that
Eiz - ei = (cPi)2 = (-cPi)2 ff(eo-Ei)Z - ei

or equivalently,
2, 2 2
] - = 1]
E! < (eo+e1 eK)/Zeo = EJ

1

with equality iff R is coherent. The statement about the lower bound of E!

1
is trivial.
\
Corollary 1. Under the conditions of Theorenm 1, the particle 1 of
the system S'(el,eK) has k.e.
k! k!
v = S =S
K e (eg + =)
with
0 <kj<e -e =k! (3)

The k.e. of e in S'(ei) must lie on the range
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0 < kj < Ky (4)

with the same conditions for equality.
Proof. One need only apply Corollary 18.1 in Theorem 1.

Theorem 2. Let {O,eo} be a class in ZI', and e >0 any I > 3 stip-

ulated proper energies of sum e = Z{ e <e,. Then, for every number Ei
and vector cPi satisfying the validity condition
2 2
t > ' = ! -
E1 0, (cPl) El e

there exists a system S'(el,...,eI) in {o, eo}, in which particle 1 has

the parameters (cP',Ei,el), provided only that

2.2 2
1 t = -
e < El < EJ = (eo+el eK)/2e0

If the given Ei = E&, this is also true provided all e

the same kind (>0 or =0).

., e. are of

2’ I

Proof. It suffices to produce a residual system R = S'(ez,...,el)

with totals

I | I ] I t = - ]
22 cP.1 cP1 s 22 Ei e, El
Since we are given in any case that Ei f_Ej < e, = €k f_eo (Theorem 18.1)

we certainly know e, - Ei > Q0. Moreover, the inequality Ei f_Ej is strictly

equivalent to
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2 2,2 2 N2 2
(-cPi) = (cPl) = Ei - e 5_(eo-E1) - ey

This insures that the class {—cPi,eo-Ei} in which we seek the system

R is at least non-empty (Theorem 15.1), and moreover has a critical energy

e* 3_eK, with equality iff Ei = Ej. But ey = Zé ei is the total proper energy

of the desired system R, and its existence follows from Theorem 16.1 and

Theorem 19.1. In detail: if Ei < Ej is given, then e* > eys the above

class has critical energy e* > 0,and contains a non-coherent system R by

Theorem 19.1(b) since the €ys.+.,€p are I - 1> 2 proper energies; if E! = Ej

1

is given, then e* = ey> and R exists as a coherent system by Theorem 16.1(c)
if ey = 0, or by Theorem 19.1(a) if ey > 0, since we have stipulated in

this limiting case that e e. are of the same kind.

PLRRREL Y
Corollary 2. Under the conditions of Theorem 2, all values of ki on

the range

are attainable, with the same condition for the upper limit,
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Chapter III

TRANSMUTATIONS OF SYSTEMS

22. Transmutations. A transmutation in an event space L is a localized

"black box'" physical process, of short duration, in which a set of free
physical particles is converted into a second such set, with conservation
of total energy and momentum. Such a process is here idealized as an event

(R,t):.

at which two systems A, S of the same class {cPo,Eo}, and concurrent at
(R,t), interchange "'reality,'" A becoming 'virtual'" as S becomes 'real."

Thus the reverse process S - A does not here connote time reversal,
but simply a reversed interpretation of reality for the same two mathematical

objects A and S, as indicated in Fig. 1.

A—S S—A
(fusion) (decay)
Fig. 1.
While other conservations laws (for charge, spin, . . .) may impose

further restrictions, we shall here regard two arbitrary systems as
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interconvertible iff they belong to the same class and are concurrent at
an event.

In particular, if S* is a system of class {cPo,Eo}, consisting of
a single particle, hence with parameters (cPo,Eo,eo), and A and S are arbi-
trary systems of this class, concurrent with S* at some event (R,t) of its
trajectory, then the fusion A > S* and the decay S* - S are equally possible.
Indeed, every transmutation A + S may be regarded, mathematically at least,
as a composite process A = S* -+ S, where the fundamental particle S* is of
negligible duration.

The present chapter is, in the main, only an elaboration of Chapter II,
which discussed the totality of systems belonging to a given class {cPo,Eo},
that is to say, having a given total momentum Po and energy Eo. Here we
emphasize the dependence of Po and Eo on the particle parameters of the
initial system A(eh).

We state below without proof, the principal implications of Chapter II

for transmutations.

Theorem 1. In any transmutation A * S, S is coherent immaterial iff
A is. For such a system A, all possible resulting systems are ‘coalesced,"
with the single trajectory of A, and parameters determined to the extent indi-
cated in Theorem 16.1.

For example, a photon of energy E = hv can only transmute into a coherent
system of immaterial particles of total energy E, all superimposed on its
own line of flight. It cannot produce an electron-positron pair,nor a divergent

set of photons.

Theorem 2. If A+ S is a transmutation between systems of class

{cPo,Eo}, both A and S have the same (CM) velocity, namely the class "velocity"
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(\70= cP /E ), and identical (CM) trajectories. If |\7°| <1 (e>0), then

A » S appears, in the L'-frame of the class, as a transmutation A' -+ S!
between corresponding systems of class {O,eo}, occurring at their stationary

(CM). Conservation of energy in I is expressed by

a a o s S
and in Z' by

+ t = = + \J

e 1<a e, € kS

Theorem 3. Let A be a system of class {cPo,Eo} with e, > 0, and let
e, > 0 be any I > 1 specified proper energies. Then a transmutation A + S

(el,...,eI) is impossible unless

™
o
Hi
o
A
o

o (T

(a) If e

e, A+ S is possible iff all e, > 0.

(b) Ife < e, A ~» S is possible iff I > 2.

In case (a), S is a completely unique coherent material system,
coalesced, with the single trajectory of the (CM) of A, and the parameters

given in Theorem 16.2. Fusion, with I = 1, is the case of physical interest.

In case (b), details on the nature of S will be found in §818-21.

Note 1. We give below an outlineof a general method for following a transmutatior
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A(eh) > S(ei).

(a) From the particle parameters e., E , and (cPh)A on given Z

h> ~h

axes A one obtains the total-parameters

a_ “®pe Eo = ZEh’ (cpo)A = E(cph)A’ Cpo = lcPol, (WO)A = (cpo)A/cpo

The class of A(eh) therefore has the parameters cPo, Eo, and

_ 2 2.% _ -
€ ~ (Eo-cpo) Z-%i’ Yo - Eo/eo’ Bo B cpo/Eo’ l{‘o

(b) The necessary condition e, > e,

3 T e for formation of a proposed

system S(ei) may be tested, although a zero cross section for the reaction
makes it unnecessary. Assuming the transformation to S(ei) possible, in ac-
cordance with Theorem 3, its actual occurrence, rather than that of competing

reactions, depends on relative values of cross sections and chance.

(c) If indeed a non-coherent system S(ei) results, with e, > e
I > 2 (the only non-trivial case), we require the I -parameters of its
particles. It may be necessary to consider for this purpose the corresponding
transmutation A' - S' as it appears in a frame I' moving with “‘velocity"
Vo = BOWO in I, usually the L' frame of the class, or the rest frame of

some particle of A(e and related to Z by the (cPE) transformation. In

h)’
such cases one requires the (cPE)-1 transformation to obtain A' from A,
and (cPE) to get back from S' to S. These transformations involve the

parameters Yo Bo, Yo associated with the velocity of Z*' in Z. If X' is

the Z' frame of the class, then

Yo = Eo/eo’ Bo = cPo/Eo’ Wo = (CPO)A/Cpo
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If Z' is the rest frame of one of the (material) particles ho of A,

then one uses for the (cPE) transformation the parameters

Y

o =B /e s B =ep JE . (¥)), = (cP )4/ lepy |
(o] 0 o o)

o o
In any case, one has two alternatives for the (cPE) transformation.

(I) One may use the vector form (10.5):

(CP};)A = (cph) A * {60 (cph. ‘yo) -YOBOEh} (WO)A

B = v {-B (cPy ¥ )+E,}
to obtain A' from A, and

(cpi)A = (cPi)A, * {Go(cpi.wo)+yosoﬁi}(yo)A

Ei - Yo{so(cpi.wo)+Ei}

to get S from S'.

(II) Therotation & defined on axes A by the matrix

a -a -a
X y z
- - 2 -
D = ay 1 (ay/A) ayaZ/A
2
Laz -ayaz/A 1 - (az/A)

where A =1 + a_ # 0 and Yo = (ax’ay’az)A
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(Appendix I, Corollary 1) takes axes A into a set of standard axes S.
. _ T . —
One can therefore obtain (cPh)s =D (cPh)A as the coordinates (cphx,

Eﬁhy’zﬁhz) of cPh referred to S. The inverse of (10.2):

Phx = Yo (@PpxBoEp) cpﬁy = Chhye CPp, = CPp,
Eﬂ = Yo(-Bo cPhx+Eh)

then gives the system A' on standard Z' axes S'. From the new system S'

on axes S' one next obtains the L system S on S by means of (10.2),

CPix = YO(Cpix+BoE{)’ cPiy = cPiy’ CPi,

ep!
plZ

= on?! '
Ei Yo(Bocpix+Ei)
Finally, we have, relative to the original I axis A,
(cP.l)A = D(cPi)S

where D is defined above, and (cPi)S = (cpix,cpiy,cpiz).

In either method, one may require the further I parameters

ki = El - ei’ Bi = cpi/Ei, (Wi)A = (cpi)A/lcpil

and the trajectory

R)p = (RPy * (t-t )B; c(¥;)4.
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In case the transmutation is studied in I itself, as for example in
fusion and Compton scattering on target at rest, the (cPE) transformation
is of course by-passed. Fusion (828), a coherent result, is trivial, since
the final system S(eo) has the parameters (cPo,Eo,eo) of the class as
obtained in (a).

(d) We have not mentioned how the resulting system is arrived at. If
e, > s and I > 2, a non-coherent result is possible. Even in the simplest
cases, it is not completely determined, and the energy, and direction referred
to the axes employed, of any particle i to be followed, must be obtained by
sampling physically given distributions. In cases of "non-polarized" emis-
sion about a stipulated basic direction, the direction of emission may be
obtained (for Monte Carlo purposes) by the ''standard device" of Appendix II.

In the case of elastic scattering on target at rest, treated in the
L'-frame of the class (830), we have Eé = Ei, Ei = Eé, and only the direction
Wé in Z' is required.

The above methods are illustrated in following sections.

Example 1. A photon (h=1) of energy 3 and direction (2/3, 1/3, 2/3)A strikes

a particle (h=2) of rest energy v2, k.e. 2-/2 and direction (-1//2,1//2,0)A.
The collision results in two particles (i=3,4)} of rest energies 1 and 2 re-
spectively. The transmutation is treated in the I' frame of the class, and
the auxiliary direction Q' = (-2/3,1/3,2/3) is chosen for location of Wé about
the basic photon direction Wi in ', as explained in Appendix II. The
parameters of S(es,e4) are required on the original axis A.

For A(el,ez) and the Lorentz parameters we have

]
W

e, =0 E, =3 ep, cP = (2,1,2)y

[¢]
1]
>
tr
1]
N

) ) ep, V2 cP, = (-1,1,0) 4
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e = V2 E =5 cp =3 cP = (1,2,2)4

o 4, Y, = 5/4, 80 = 3/5, wo

(0]
1

(1/3,2/3,2/3)A

For the proposed S(es,e4), we have e, > €, = 3, I = 2, which is possible.

Using Method (I) of Note 1, we pass to the frame L' by

() (cPi)A, - (cpl)A * {ao(cpl.wo)—YoBoEl}(wo)A

e x

> 1/3 53/36 | | .0
1|+ {(/4)(8/3) - 3/8)(3)H2/3 = |- 2/36| =|{Piy
2 2/3 34736 fep!,

= YO{-BO(CPI'YO)+E1} = 7/4, cpi = 7/4

1
El

P
eplr
1 1/3 ~53/36 . 2x
(P40 = | 1] + /8 (3/3)-(3/8) ()} 2/3) = | 2/36) = [*FP2y
0 2/3 ~-34/36 cpéz
L .

Ey = 5/4{(-3/5)(1/3)+2} = 9/4,  cp} = 7/4
Note: cP! + ¢cP! = 0, E

1 2

Standard device (App. 1I):

Basic direction Wi = cPi/cpi = (53/63,—2/63,34/63)A,

Auxiliary direction Q' = (—2/3,1/3,2/3)A,

[53/63 2/63 -34/63 -2/3
¥y = 8Q' = |-2/63 1826/1827 17/1827 ] . [ 1/%]
| 34/63 17/1827 1538/1827 2/3
1-4988
= | 197¢] / 5481
1121},

IllllllllIIIIIIIIllllllIIIIIIIIIIlllllllllllllIllIIIIIIIIII----------L_,
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2 2 2
e + e, -e
_ 7o 3 4 _ _ Y _

Eé = 2e0 = 13/8, cpé = (105) “/8 cP% = cpé ?é
E! = 19/8 cp! = (105)%/8 cP! = -cP!
4 ? 4 4 3

(CPS)A = (CPE)A' * {ao(cpé.wo)+YoBoEé}(wo)A

E; = Yo{Bo(cPé-Wo)+Eé}

are then computable and (cP4)A = (cPo)A - (CPS)A, E4 = Eo - ES'
Some of the above steps are obviously unnecessary, but are included

as a check.

Example 2. A photon (h=1) of energy 4 strikes a particle (h=2) of rest

energy 3 and k.e. 2 at right angles, their directions on I axes A being

wl =(1/v2, 1//2,0)A wz = (1//2,-1//2,0)A

The collision results in two particles (i=3,4) of rest energies 2, 4 re-
spectively. The auxiliary direction Q' = (1/v2,-1/2,1/2) is chosen for
location of Yé about the stipulated photon direction Wi in the I' frame of

the class. Here we have

e, =0 E, =4 ep, = 4 W1==(1/¢b,1/¢2,0)A cP, = (2¢?,2¢7,0)A
e, =3 E, =5 ep, = 4 v, = (1/¢?,-1/¢7,0)A cP, = (2v@,-2¢?,0)A
e, =3 E =9 ep, = 4v2 ¥ = (1,0,0), cP = (4/2,0,0)A

e =7 Y, =9/7 B, = 472/9
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Since LR > e, = 6, I = 2, a non-coherent system S is possible.
Moreover, Wo = X, so the given axes are standard, and we define parallel
' axes A' in the standard configuration of Fig. 5.1.

We next compute the basic direction ?i on axes A':

cpix = v, (ep; ~BE) = 2v/2/7
Bl = Yo(-Boap ) = 20/7
ep! = (Eiz—ef)% = 20/7
aj, = cpix/cpi = v2/10

v (v2/10, 7v2/10, 0) 41

Applying the device of Appendix II, we define

Qr = (1/v2, -1/2, 1/2)Ar
v2/10 -7v2/10 0
D = |7V/2/10 v2/10 0
0 0 1

S0 Wé = D(@2') 4, is the I' direction of 3 on axes A'.

2, we have uniquely by §18

Since I

m
W -
1]

)/2eo = 37/14

AN

2 2
(e +e_-e
o

epy = (Eéz—eg) = 3/65/14

S

cP

epy(¥5) 4

[N
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From this we obtain the I energy
= t '
ES Yo(Bocp3x+E3)

and the coordinates of cP3 on % axes A:

i (cPéx+BoE') CpSy N cPéY CP3p = Cpéz

The last two examples are quite arbitrary. Compton collision is
ordinarily treated in the rest frame of the target (§31).
For instance, in the present example, we should find

cP{ = cP, + {(Yz-l)(cg-vz)-yzszﬁl}wz = (-2v/2/3, 14/2/3, 0)

cp; = 20/3 ¥ = (-v2/10, 7v/2/10, 0) for the photon in the rest

frame of the target.

23. The Q-value. The Q-value of a (proposed) transmutation
A(eh) -+ S(ei)
is defined as the intrinsic difference
Q=e_ -e (1)

in the total proper energies of the two systems. Thus the energy conservation

equation in Z,




e-{-k = E = e +k (2)

k, +Q=k 3)

emphasizing that, in the conversion of A into S, the "loss" in proper
energy must balance the '"gain'" in k.e. This also makes obvious the
invariance of the k.e. difference of two systems of the same class under
an arbitrary Lorentz transformation. Moreover, the invariantly expressed

threshold condition

&) e > & 4)
is equivalent to Eo z ey, Z_esyo. Since Eo =e,+ ka’ this may be
written in the form

T(Z) ky > (-Q + (r-Deg (5)

Thus the threshold condition in I states that the total k.e. ka(xf the initial
system must suffice to supply any proper energy increase, plus the k.e. of a
particle of proper energy e riding at its (CM).

In the Z' frame of the class, the corresponding transmutation A' - S!'

satisfies the conservation law

e, +k! =e =e_ + k; (6)
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or
k' + Q= k! (7)

a

Here the threshold condition e > e_ is equivalent to

O s

T(S") k! > (-Q) 8)

since e = e_ + k!'.
o] a a

The conservation equation (2),

is formally like the law of constant potential plus kinetic energy in
mechanics. Indeed, one may think of a transmutation as a process which

raises e, to a maximal value €y and then drops it to a final level eg> where

Q=-e, - e is the net '‘potential drop,'" as indicated in Figure 1.
€o
N es Q<O0, kq>ks
eq / \\ eg Q=0, kqg=Kkg
\ es Q>0, kq<kg
Figure 1.

Rest Mass as '"Potential™

The transmutation A > S is said to be elastic in case the total
kinetic energy is conserved, as well as Eo and Po. Such a change is

therefore one for which we have the additional stipulation k, = ks, or




-150-

equivalently Q = 0. Hence the elastic nature of a collision is invariant

under Lorentz transformation, and is always possible since e < e, and

In practice e, = e signifies the identity of the individual proper
energies of A and S, and when H = 2 = I, the two participating particles
preserve their individual energies and absolute momenta in the Z' frame of

the class, as required by Theorem 18.1.

24. Decay. By a "decay" we mean any transmutation of form

(D) A(eo) > S(el,...,eI); I>2 (1)

in which a single material particle is converted into a system of two or
more particles. Here, the proper energy of the decaying particle is neces-
sarily the critical energy of its class {cPO,EO}, and the necessary condition

e, z_es becomes simply

T(D) Q>0 (2)

Thus the decay is prohibited if Q < 0 (eo<es) regardless of the k.e. of e,
(why is this consistent with (23.5)?). If Q = 0, decay is possible iff all
e, > 0 with a trivial coherent result. If Q > 0 (the only case of physical
interest) the decay is always possible since we have stipulated I > 2.

The parameters Yo’ Bo’ Wo of the transformation to the L' frame of the

class are those of the decaying particle; in particular

Yo = EjJe,, B, = cp /E (3)
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Moreover, the L' frame is the rest frame of the particle, in which
it appears stationary, with rest energy e > and some intrinsic life time
T'. We recall (86) that its apparent life span in X is T = YOT', during
which it travels a distance YoBocT' in the direction Wo (86).

In I', the decay appears as an "explosion'" of a particle at rest,

with a conversion of proper to kinetic energy indicated by the equation (23.7)
0+ Q=i )

Some forbidden decays. (a) For a bare nucleus (g) of charge +Zq containing

A nucleons (Z protons p+, N=A-Z neutrons no) the decay

(;) - Zp+ + Nno

is impossible since Q = e(é) - {Ze(p+)+Ne(n°)} < 0. Here -Q is called the
binding energy of the nucleus.
(b) For the neutral atom [;] with Z electrons € in ground state

about the nucleus, the decay
A A -
[;] > () + Ze

is forbidden, since Q = e [2] - {e(§)+2e(s—)} < 0, -Q being the binding
energy of the electrons. In nuclear reactions, this is ignored. For ex-
ample in (a) one would take Q = e[;] - {Ze[i] + Ne(no)}, where [i] denotes
the neutral iH atom. Table IV gives a few neutral atom proper energies in
"atomic mass units'" (AMU). From this one may verify the binding energy

2

(2.225 MeV) of the deuteron [f] = 1H.
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(c) The decay p+ +n° + e+ Ve of a free proton into a neutron,
positron and neutrino is forbidden by the Q-value Q = -1.8 MeV (Table III),
although this is the basis of positron decay in unstable nuclei.

(d) An electron decay € -+ € + Y has Q = 0 but violates the require-
ment that all product proper energies be positive.

(e) The process p+ + ¢ has Q > 0, but does not produce at least two

particles.

Since we regard a transmutation A + S as possible iff A, S are in the
same class, its impossibility obviously implies the impossibility of § + A,
although the latter may be true for apparently different reasons. Consider

the reverse of the transmutations in (d) and (e).

25. Decay into two particles. In a decay

A(eo) - S(el,ez) (1)

where k; =Q-= e, - (e1+e2) > 0, the products emerge in opposite directions

in the X' frame of the class, with the unique energies Ei, ki given in

(18.2), (18.9). The relation between the systems S(el,ez) N S'(el,ez) is
illustrated by Fig. 20.1. If e, is at rest in I, the frames I, I' coincide,
and all parameters of S are of course those of S',

I. In the simplest case, one has e1 = e2 = e, as in Note 20.3, so that
k! =Q=e_ - 2e, and for i = 1,2,
S [o]

ki = Q/2, EJ =e /2, cp} = ((eo/Z)z-eZ)li. (2)

Thus in the kaon decay (Table III)
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K> o+

Q = 218.6 MeV, and each pion has k.e. 109.3 MeV in L'.

In particular, when e, = e, = 0, the decay involves a total conversion

of the rest energy e, into kinetic energy

ki=Q=e | (3)

with ki = Ei cpi = eo/2. This is the case for which we have the simple

result of (20.4),
: 4
sin 0/2 = eo/2(E1E2) z_eo/Eo = l/Yo

for the angle o of separation between the two lines of flight in Z.

For example, the decay in flight
o
T >Y + Y

of a 135 MeV (k.e.) neutral pion yields photons with a minimum angle of

separation of 60° in Z, each having energy Ei =cep, = 135 MeV. (cf.(20.3))
A second instance is provided by the decay of ''parapositroneum:"

{€++,€—¢} + Y+ + y¥. Neglecting its binding energy, each photon in I'

has energy hv{ = e(€)=.5110 MeV, and wavelength Ai (by definition) the

Compton wavelength of the electron (§1).

. + .
Note. Although a free positron € is stable, it comes to rest locally when

liberated (as in pair production and positron emission) in the presence of
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matter, and may then combine with an electron € to form a very unstable
"double star" complex {¢ ,€”} called positroneum. When the component spins
are opposite (the usual case) the result is parapositroneum, with the decay
mode above, the photon spins also being opposite. Spin conservation is
indicated by the equation % - % = 0 = 1 - 1. The alternative result is
“ortho positroneum," with the decay {4,674} > v+ + v+ + y¥, and spin

conservation 5 + 5 =1 =1+ 1 - 1.

II. In another important case, one has e >0, e, = 0, with ké =Q =

e, = € > 0. Here, the formula (18.9) for the k.e. of ey in Z' becomes

ki =Qo, P =0Q/2e (4)

and the relations

E] = e + ki, cp; = E) =k, =Q(l-p) (53
provide an easy way of obtaining the remaining parameters of S'.

Since Q = e, - e < e s it is clear that p < % and hence

1
k! < k'/2 < k!
1 S 2

while the energy formulas

trt
1]

1 (eo/2){1+(e1/e0)2}

(=2l
N -~
]

(eo/Z){l—(el/eo)z}
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show that

[ > Rt
El eo/2 E2 .

As noted in 818, such inequalities obtain whenever e > e,.

The Eé equation implies the relation

e = k! + (k'2+e2)1/2 ’ (6)
o 2 2 1
which may be used to compute the rest energy of the decaying particle from
that of the material product particle, and the energy of the accompanying
photon.

The decay modes of some of the "fundamental particles" (Table III)

fall under Case II, for example, in the decay
52 > 7% Y .

Taking e, = 1193, e = 1116, we have Q = 77, p = .0323, ki = 2.487,
Ei = 1118.5, cpi = Eé = ké = 74.5 (all MeV).

In a nuclear decay of this type, Q = e, - €; may be thought of as the .
difference in energy levels of the ''same" nucleus, having rest energies
e, > 2 in the two states. In such a photon emission it is interesting
to compare the emitted photon wavelength ké = c/vé with the '"normal"
wavelength Ao = c/vo, where by definition hvo = Q is the difference in energy

levels. Dividing the latter equation by hvé = ké = Q(1-p) yields

Aé/ko = vo/vé = 1/(1-p) and therefore
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2! = (ké-lo)/lo = p/(1-p) = ki/ké = Q/(Q+2e1) (7)

is the '"red shift due to recoil' in X'.

III. When 2 > e, > 0, the general formulas of §18 are required. The
decay modes E A +n” and 27 >0 1" of Table 11I, and the classical

nuclear emission of o particles (;He) are of this kind.

Example 1. A particle of rest energy 3, traveling on OX with k.e. 2

decays in flight into two particles each of rest energy 1, the first of which

is emitted in I' at 60° with OX'. Then for A(eo) > S(el,ez), e, = 3, ko = 2,

E =35, ¢p 4, Y, = 5/3, Bo = 4/5

0 )
e, =1, E!=13/2, ep) = v5/2, i=1,2
E, = 5/3(4/5+V5/2+1/2+3/2) = (15+2V/5)/6
E, = 5/3(4/5°v5/2+ (-1/2)+3/2) = (15-2V5)/6

Note that this falls under Case III of Note 20.3.

Example 2. The particle (h=0, eo=3, ko=2) of Ex. 1 has direction
Wo = (2/3,2/3,1/3)A on ¥ axes A, and decays in flight into the same two
particles of rest energy e = e, = 1. If, as we shall assume, the decay
product 1 is emitted isotropically in the rest frame of the decaying particle,
the "basic direction of emission'" is ours to choose, and we shall do so in
two different ways in the two methods (I), (II) (See Note 22.1 and App. II).

We suppose the auxiliary direction Q' = (2/7,6/7,3/7) in either case. Here

we have
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e =3 E =5 ¢p 4 Wo = (2/3,2/3,1/3)A cPo = (8/3,8/3,4/3)A

(o] (o] (o]
Y, = 5/3 Bo = 4/5
The proposed system S has e, = 2 < e, = 3, I = 2, so non-coherent

decay is possible.

As before, we have for S' in Z',

= 1 = 1 = i =
e; =1 EJ 3/2 ep} vs5/2, i =1,2.

We now consider the two methods of Note 22.1.

(I) We choose L' axes A' parallel to the given I axes A and select
X' as the basic direction ¥' (Transformation of A to A' is unnecessary).
We take the L' direction of 1 to be Wi =Q' = (2/7,6/7,3/7)A,, and so have

E] = 3/2, Py = (/5/2)W£ on axes A!'.

Then one computes E, and (cPl)A by using the vector form

1

(cP)y = (P g+ L0v,-1) (cPy=¥ )+Y BLE'}(¥ )4

By = YolBo(cPi-¥p)+Eq)

The inner product required is (cPi-Wo) = 19/5/42 and the energy is
E, = 38V/5/63 + 5/2. We omit computation of (cPl)A.
(II) We obtain a set of standard axes S in I by using the rotation

§ of App. I, Corollary 1, with Glx = Wo and associated matrix
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TABLE III

SOME '"'FUNDAMENTAL' PARTICLES

Typical Mean
e (MeV) Particle Decay life (sec)
_ | - -1
Baryons Hyperons | 1321.3 = I st e A%+ 1.66 x 10 0
J=Y 1314.7 =0 =0 5 240 3.0 x 10°10
1197.37 5 57l e 1.5 x 10710
1192.51 £° 7° 504 2% .y 10714
1189.42 5 Pl st e 2% .8 x 10710
1115.6 A° A £°+ phe 2.5 x 10710
Nucleons | 939.553 n° 70 n® > p" o+ e 40 | 932,
938.259 p p ®
Mesons 497,79 Ko @ Ko > T o+ T .86 x 10']‘0
J=0 493,84 K K | kK o+ ou o+ G; 1.2 x 1078
139.576 T | ol e u {); 2.6 x 10—8
134.972 T s oy ey .84 x 10710
Leptons Muon 105.669 L ' T e T 49 v 2.2 x 1076
family ‘
J = 1/2 0 AV} 3 =]
H { 'J
| +
Electron .511 € l e oo
family )
0 % | ©
€ B
Photon 0 yl o
J=1 I
| _
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where k; =Q = e, - (el+e2+e3) > 0, the X' energies of S' are not unique,
and as shown in §21, any one of its particles (say i=1) may have for its

k.e. values on the range

kl
[] |:i _1_| t =
0 < k1 < kJ = & (eK * 5 ks), ks Q (2)
where ey = e, + e, (See Corollary 21.2 for end points.)

For example, the L' energy range of any one of the three photons
produced in orthopositronium decay (825) is 0 < ki < .511 Mev.

Perhaps the most notable instance is the decay
o - + =
n*E +p o+ VY {Q=.783 MeV)

of the free neutron (mean life 932 sec.)
Thus the electron should have a k.e. range
.783

) i, =
0 f_kl < 939 553 (938.651) . 7822 MeV

and this is observed experimentally.

Note 1. A decay of form n® > e + p+ has the same positive Q-value and
is also mechanically possible, but would result in a unique k.e. ki = k&
for the electron, in conflict with experiment, and would violate spin con-

servation, since + % # + % + % for any choice of signs, (Hence the "invention"

of the neutrino by Pauli, and it "discovery' by Reines and Cowan.)
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Note 2. Neutron decay is the basic process in electron emission from un-

stable nuclei (B-decay),
A - A -
() > €+ () +
e.g. in the decay of the triton
3 - 3 -
(GH) e + (JHe) + v_, Q = .0182 MeV
1 2 €
Note 3. The analogous nuclear positron emission
A + A
(> e+ (o) * v,

is observed, although the process is forbidden to the free proton. An

example is the transition

.96 MeV

11 + 11
( 6C) +>e + ( 5B) + ve, Q

Note here that, for such decays, "adding" Z electrons to each side results

in the neutral atom "reaction"
A + - A
[1>e +e + [ ]+ v

so that Q = e[é] - 2e(e) - 3[261]

where e(e) = .511 MeV.
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27. Collisions with target at rest (TAR). Every transmutation of form

A(eh)-+ S(ei) in which A consists of a single particle (H=1) may be regarded
as a '"'decay." All others, with H> 2, are called '"collisions," and we

shall consider only those with H = 2, of the form

(1)

]
(]
]
(o]

(9] Ale;,e,) = S(ei); Q

where particle 1 will be called the "projectile,'" and 2 the '"target."

We study first the important special case in which the target is a
(necessarily) material particle at rest in its own rest frame I, with the
projectile moving toward it on 'collision course." As a common basis for
the following sections dealing with such collisions, we consider as given

an initial system A(el,ez), with particle parameters

_ _op2 2.4 -
e >0 kl >0 E1 =e * k1 cpy = (El-el) cP1 = cplwl (2)
e, > 0 k2 =0 E2 =e, ep, = 0 cP2 =0
and hence with the totals
e =e *e, ka = k1 Eo = El *+ e, ep, = cpl cPo = cP1 3

The critical energy of the class {Eo,cPo} to which A belongs is therefore

e

2 25 .
o (EO-CPO) s 1.¢€.,

)t > e (4)

(0]
{

= (e2+e2+2e E )l/2 = (e2+2e k )1/2 = e (1+
o] 17277271 a 271 a
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The class parameters, on which the Lorentz transformation to the I' frame

of the class is based are then

Y, = Ej/e,, B =cep/E, YB, =ecple, Y =V (%)
The basic direction for emission of products e is Wl, which coincides
with the direction Wo of L' in Z, and hence with the X-axis of standard
axes S,
The proper energies e; > 0, of sum e, = Zei, being stipulated for the
proposed system S, it appears from (4) that the invariantly expressed neces-
sary condition e, 2-85 assumes, in the target rest frame X, the form

e +e

(T) k o=k > f;_ezs -Q =k, (6)

where Q = e - ey and kT is the (k.e.) "threshold" for the reaction.
Since the inequality e, Z_es is here strictly equivalent to k1 z_kT,
we may interpret the results of Theorem 22.3 in the convenient form of

Theorem 1. The proper energies e, of S being stipulated, then

I. when Q<0 (ea<es), A + S is impossible unless k1 z_kT;

(a) if k1 = kT(eo=es), A > S is possible iff all e, > 0. (Example: fusio

) if k1 > kT(e0>es), A + S is possible iff I > 2;

II. when Q Z_O(eazgs), then kT < 0, and its value is irrelevant, since
kl >0 z_kT and e, > e, . Hence A ~ S is possible iff I > 2. (Example:

elastic collision, Q = 0.)

We observe, if Q < 0, that kT >(-Q) necessarily.
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e, + es 2ea
In fact, kp = ——535-—-(-Q) > EE;{_Q) > (-Q).

In general, energy conservation requires

a 1 o s S
or
k1 * Q= ks
so that
> >
ks z k1 as Q 0

In the I' frame of the class, the system ATel,ez) belongs to the class
2
. v
{O,eo}, and, by (4) and Theorem 18.1, has the energies Eh (eh+e2E1)/eo,

or more simply
t = = t = -
EZ eZEo/eo SRS E1 ® " %2Y% @)

The oppositely directed vectors cPﬁ have the equal magnitudes

= Y,B,8, = BE; (8)

The formula Eé = e,Y, reflects the physically obvious fact that the target

has the same speed in L' as the (CM) of A in I. This accounts for the re-

lations

1 = ] |
YoBoEZ Yocpz’ pz =1

and the position of 03 on the ellipsoid E in Fig. 1, showing the relation

between the initial systems A, A'.
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o cPp O cPf 02 _w.v-v
Yo BoEl o ‘ I T I
1
©Ph ' !
YotPh = Y0 BoE>
-
' cP, = cPy,

Fig. 1 (el>e2)

The initial system A.

It may be noted here that Oi falls (I) inside, (II) on, or (III) out-

side the ellipse E according as

o
VIA
[}

2 (9)

i.e., in case of a projectile of proper mass "lighter" than, equal to, or
"heavier' than that of the target. To see this we need only note that, in

the present instance,

VIIA
<
o)
S
[y
n
o
o
NS
!
<
™
tr
N ~

10! = '
O1O YoBoEl

VIA

according as Ei Eé, and the remark follows at once from the equation

2 2 2 2 2
1< = 1< o 19 - pr©
Bl -e =00 =y =B -
Note 1. There are good reasons for considering first, in some detail, col-
lisions in the rest frame of the target, aside from their greater simplicity.

(a) In many physical collisions, the target may be assumed essentially at

rest in the laboratory frame I. (b) If the target is a material particle

e
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moving with constant velocity V2 # 0 in Z, a preliminary Lorentz trans-
formation based on V2 will carry the colliding system into a frame in
which the target is at rest, and to which the simpler theory applies.
(c) The "general" methods of §34 really require the target to be in

motion, with a well-defined direction Wz, specializing to the TAR case

only in a limiting sense.

Example 1. A particle of rest energy 1, traveling with k.e. 4 on OX,
strikes a motionless particle of rest energy 2. The initial system A has

parameters and totals

e; =1 k, =4 E, =5 ep, = 2v/6 cP, = (2v6,0,0)
e, = 2 k2 =0 E2 = 2 cp, = 0 ch = (0,0,0)
e, =3 k, =4 E, =7 ep, = 2v/6 P = (2v6,0,0)

o . . _ .2 5 _
The critical energy of its class {Eo,cPo} is e = (ea+2e2k1) = 5,
and the parameters governing the transformation to the I' frame of the class

are

The parameters of A' in Z' (if required) are

[=2]
fi
[¢]
N
<
I}
[
S
~
(9]

cp] = ep) = B E) = 4v6/5

The origin O! of the vector cP1 is within the ellipsoid since e1 < e2, p! < 1.

1 1
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28. Fusion (TAR,I=1). For an arbitrarily given colliding system A(eh),
%

> e, a fusion

. . 2 2
of class {cPo,Eo}, with critical energy e = (E_-cp.) a

A(eh) + S(e) is always a mathematical possibility, provided only that the
single particle resulting has a rest energy e precisely equal to e, While
the reverse of a decay process, there is here the physical implication that
the fused particle incorporate into its rest energy the given critical energy
of the system to which A belongs.

In a collision with target at rest, we shall therefore consider the
fusion
(F) Ale;,e,) > S(e ) (1)
where by definition
< (o2 %
e, = (ea+2e2kl) (>ea) (2)
Technically, the Q-value of (F) is then the negative number

Q= e, - €, < 0 (3)

and

kp = 5o~ (-Q = 2e., =k (4)

Thus a fusion always occurs exactly ''on threshold." (Theorem 27.1.)
The fused particle rides at the CM of A, with the class velocity Vo
and energy E » indeed with all its parameters those of the class {cPo,Eo}

of A,
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The energy conservation equation

k) + Q= k (<k;) (5)

indicates a conversion of kinetic to rest energy. (We recall that a
coherent system has the least k.e. and greatest proper energy of all
systems of its class (Corollary 15.2).

In the I' frame of the class, the two particles of A' fuse into a
motionless one, with a total conversion of kinetic to rest energy:

' % = k' = t = (-
k! +Q=k =0, k' = (-Q (6)

A fusion sometimes results in a particle which possesses a (more or
less) stable ground state of rest energy eg. In such a case, one has
necessarily

)

e >e
- 8

and the fused particle is said to be formed with an "energy of excitation"
e*x=¢e ~-e >0. 8)

If the fusion occurs at vanishingly small incident energies kl’ as it does
for the neutron capture

n° + (ZSSU) > (236U

)* (9)
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L
then, since e = (e2+2e k.,)*+ e as k., >~ 0, necessarily e > e_ and the
o a 271 a 1 a — g
intrinsic energy

e; =e - e (10)

is the "minimum energy of excitation'" with which the particle can be

formed (Fig. 1). In the case cited, one finds from Table IV that
et = e(®%uy + e@®) - e(*3%) = 6.4 Mev (11)

This is more than (236U) can stand and results in fission 85% of the time.
In "radiative capture' (neutron capture followed by Y emission, a less
drastic result) the excited nucleus formed in the fusion

A+l

o *
e > A (12)

o = (el + 26, k,)%
Q e*
eq=e +e, — '
a le*:n
g
Fig. 1.

A(el,ez) > S(eo)

has a ground state to which it may drop by emitting a photon:
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Ahe - &h ey (13)

The Q-value of the latter '"decay'" is then precisely the energy of excitation
with which (Azl) was formed in the fusion (12).

Nuclear Y absorption
v+ Q) - * (14)

provides a further example. Here the ground state rest energy is e, itself,

and the energy of excitation takes the simple form

2k o
= ez{-l+(1+ - ‘} (15)

2 '5]
* = - = + -
e e € (e2 2e2k1) e

0 2

Example 1. If the collision of Example 27.1 results in fusion, the
product has rest mass e, = 5, energy Eo = 7, and momentum cPo = (2v6,0,0).

The Q-value of the reaction is Q = e

2 " € T -2, and 2 units of k.e. are con-

verted to rest energy:

ka + e = k0 + e0
4 +3 = 2+5

29. Two particle product systems (TAR,I=2). We have given the class

parameters for a "target at rest' system A(el,ez) in 827, and discussed in
§28 the case of fusion, where the resulting system consists of I = 1 particle.

We now consider, in a general way, transmutations of form
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A(el,ez) > S(es,e4)

with I = 2 non-coherent product particles, and will focus attention on e

3
Since I = 2, we have uniquely
kl
= '=_S 110
(e +e3 )/2e S :. (e +ikl) (1)

for the energies of e, in the X' frame of the class, where

e = (e2+2e.k.)% > k' =e -e =k'+Q>0 (2)

o a 721 ®s0 Xs 0 s a

are the critical energy of the class, and the total X' k.e. of S'.
Since the class {cPo,Eo}, with its parameters Yo,Bo’ WO = Wl are

. 2 2

! | 1<

given, and ES’ Pz (E3 e3)

and we have for standard axes the following summary.

5
* are fixed, the equations of §13 are relevant,

epg/epy = Y D', D' = {(agx*fog)zw;z(l-agi)}11 (3)
= B Ex/epy = B,/ B3 4

= Y, (az, tpz) /Y D' (5)

4
cpS/cPé - p%{aSXiﬁa§x+K) }/Yo(l-siaix) (6)
K=y, (1 3 a3 )(———-- 1) (7
ps
a8, 1 (a0 7K 7]
1 = At 3x—
azx = P3 l'l * 2, B2 7 (8)
Yo azy)
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The usual three cases for e, are distinguished by the inequalities

1 as indicated in 813. For completeness, we list the main

VA

0y = 8,By/ey

results.

Case I. pé <1l. (#) in (6), (8), -1 f_a3x <1

= ' = -
For e, 0, Pz Bo, (3)-(8) become

epg/epy = v d',  d' =1+ Bay €))

an - (a%x+80)/d'
epg/epy = 1/y (1-8 a; )
az, = (az,-B.)/(1-B a; )
Case II. pz=1. (+)in (6), (8). 0<a, <1.

The formulas become those of 13.12, with the obvious insertion of index 3.

This case is not a mathematical technicality. It occurs in elastic scattering

when e = e,
] 3 a2
Case III, Pz >1. () in (6), (8). Qe f-a3x <1
2 35
! -
8 = Eé____i
3x 12 _ a2
p3 Bo

Further details will be found in §13.

Analysis of case dependence. We give below the dependence of cases

(for eszp) on the relative sizes of k1 and the proper energies involved in

the transmutation.

It is easy to verify the equivalence of the following inequalities:
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|§ .§ ' = 12_2;5. §|. § 1. §
Pz S 1; B E3 S epg (E3 e3) AP ES’eSEo 5 e, E3, 2e3(k1+e1+e2) 3
2,2 2_ 2 2 2 _ 2 2 a2 <
e, t €5 - e, =€+ 2e1e2 e, ¥ 2e2k1 *eg - ey &y - (e1+e2 e3) 3

2(32"33)](1; {e4+(el+e2_e3)}{e4-(e1+ez-e3)}§ zcez—es)kl; (264+Q) (-Q) ;

2(e2—e3)k . It follows that cases I, II, and III for e

1 obtain according as

3
(045 (-Q) = (ep-e)ky (10)

This inequality conceals a plethora of special cases, and we shall

restrict the present dicussion to collisions in which

1 =1 -
e, + 5Q = 4(e1+e2+e4 es) >0, e, z_ez (11)
Even now there remain many possibilities, which we outline because of

their physical importance.

1. e; = e, (>0 by assumption)

a. Q>0 (e1>e Case 1I.

40
b. Q=0 (e1=e4) Case II.

c. Q<0 (e1<e Case III. (kl>kT required)

4)
a. Q >0 Case I.

b. Q=0 Case I.

c. Q < 0. Here the criteria (10) may be written as

VILA
~

(OOK* = (e,#4Q) (-Q)/ (e,-e,) (12)
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Using the definitions Q = ea - es, ea = e1 + e2, es = e3 + e4, one can
show that the threshold energy kT = (ea+es)(-Q)/2e2 satisfies the relation

kp < k* (13)

with equality iff e, = 0. In fact, (13) is equivalent to O f_eS(ZeI-Q),

which is true since ez >0, Q<o0.

Hence for e3 > 0, all three cases may arise:

* = k* *
III. kp <k <k II. k =k I. k* <k

in the order of increasing kl'

In the special and important case e, = 0, only case I is possible.

3

In fact, we know that whenever e, = 0, regardless of other considerations,

3
03 is at the left focus of the ellipse and hence necessarily falls under
case I,

Note that for an elastic collision with Q = 0, e, = e €, = e4, the
basic inequality (10) is equivalent to the condition e é €, in agreement
with §27.

The following collisions, all but one of the type considered in this
section, are historical landmarks in artificial transmutation. The MeV

values of Q and kT may be verified from Tables III and IV.




Q kp

JHe + 1IN 175 & -1.19 1.53 Rutherford, 1914
2 8
JHe + e > lgc +n 5.7 - Chadwick, 1932
n® + My o 4o ! .63 - Feather, 1932

7 6 1
1H 7. 4
1 + 3L1 > 2(2He) 17.3 - Cockcroft, Walton, 1932
4 27 30 .
2He + 1:(,Al -+ 15P +n -2.65 3.05 Joliots, 1934
Y + iH > iH + no -2.225 2.226 Chadwick, Goldhaber, 1935
+ + + - s .
p +p +3p +p -1877 5630 Segré, Chamberlain, 1954
- + o + .
\)E +p *n +€ -1.805 1.807 Reines, Cowan, 1956
- + o +
\)]_1 +p >n + U -107 113 (Brookhaven) 1962
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Example 1. If the collision of Example 27.1 results in two particles

of equal rest mass 2, the I' parameters of the resulting system S'(es,e4)

are
e; =2 El =e /2=5/2, ep} =3/2, p] =B El/cp} = 10/6/21 > 1 (Case III)

The Q-value is Q = 3 - 4 = -1, and the threshold is

e + e
a

= s = ! =
T, (Vg4

This inequality is equivalent to e, = 4<e =25,

30. Elastic collision (TAR, I=2). We consider in this section in general, and

in the next two with e, =0, the important case of elastic collision on target

at rest, of the simple form

A(el,ez) > S(es,e4)

where e; = e >0, e, = €, > 0, and hence Q = 0, k1 = k3 + k4. We recall

from §27 the Lorentz parameters

- o2 5y - ]
ey = (ea*2e,k)?, Y = E fe, B = cp [E, (1)

1 t = L ;
the I' parameters E2 Y&y CPp YoBoez’ and the fact that e, is always

2

on the ellipsoid E, whereas e, is inside, on, or outside E according as

1

In the corresponding collision A' -+ S' in the I' frame of the class,
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even the individual energies are unchanged:

and indeed, A' and S' as systems of class {O,eo} with e * e, < e, can

differ only in direction. From 827 we theref<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>