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Abstract 

A stochastic geometry capability has been implemented into the MCNP5 Monte Carlo code. This 

capability allows the analysis of TRISOL particle fuel, allowing for the random locations of the fuel 

kernels within the graphite matrix. The method has been compared to a MCNP5 benchmark calculation 

of randomly placed fuel kernels within a box with reflecting boundaries as well as multiple realizations 

of lattices where the microspheres are randomly located within the equivalent cubical cells. 

Comparisons are also made to MCNP5 calculations where the fuel kernels are fixed on a cubical lattice.  

Our preliminary results for infinite medium configurations indicate that the new stochastic geometry 

capability in MCNP5 is an accurate and efficient approach to analyze TRISO particle fuel 

configurations.  

1. Introduction 

Coated particle fuel (TRISO fuel) is the likely fuel candidate for the Next Generation Nuclear Plant, 

which is expected to  be a high temperature gas reactor (HTGR) using either a prismatic or pebble-bed 

design (MacDonald et al. 2003). Pebble bed or prismatic designs for HTGRs present a significant 

challenge for geometry modeling due to their multiple levels of heterogeneity. Prismatic HTGRs are 

composed of hexagonal fuel assemblies that contain fuel compacts, burnable poison compacts, and He 

coolant channels in a graphite matrix. The fuel compacts are cylindrical and contain coated microscopic 

fuel kernels (~ 1 mm diameter) embedded in a graphite matrix. Each fuel kernel typically has a spherical 

uranium oxycarbide region surrounded by layers of graphite, pyrolytic graphite, and silicon carbide. 

Pebble bed HTGRs contain randomly located fuel pebbles which in turn are filled with randomly located 

fuel kernels in a graphite matrix. Either core configuration results in the well-known "double 

heterogeneity", with the fuel kernels constituting one heterogeneity and the fuel pebbles (~ 4 cm 

diameter spheres) or fuel compacts ( ~ 1 cm diameter cylinders) causing the second heterogeneity. This 

paper primarily concerns the analysis of the stochastic particle heterogeneity which is applicable to both 

prismatic and pebble-bed designs.  

We have developed a capability for treating the particle heterogeneity by developing a stochastic 

geometry capability in MCNP5 (X-5 Monte Carlo Team 2003) that accounts for the random locations of 

the fuel kernels within the graphite matrix. This method is a relatively straightforward modification to 

the MCNP5 tracking routines that effectively results in a random displacement of the microsphere 

within a cubical matrix cell whenever a neutron enters the cell. The method has been compared to a 

MCNP5 benchmark calculation of randomly placed fuel kernels within a box with reflecting boundaries. 

Comparisons are also made to MCNP5 calculations where the fuel kernels are fixed on a cubical lattice 

as well as multiple realizations of lattices where the microspheres are randomly located wholly within 



the equivalent cubical cells. Our preliminary results for infinite medium configurations indicate that the 

new stochastic geometry capability in MCNP5 is an accurate and efficient approach to analyze TRISO 

particle fuel configurations. 

2. Methods for the analysis of particle fuel 

2.1. Effective Dancoff factor approach 

The original methodology for analyzing TRISO fuel used effective Dancoff factors to compute 

heterogeneous resonance integrals that were then used within unit-cell transport-based spectrum codes 

(Massimo 1976 and MICROX-2 1999).    

2.2 Explicit Monte Carlo on a lattice 

Several investigators (Johnson et al. 2001, Plukiene and Ridikas 2003, Difilippo 2003) have 

analyzed particle fuel by placing the kernels on a lattice within the graphite matrix, with the lattice 

dimension determined to preserve the packing fraction.  For example, Defilippo used MCNP4C to 

analyze a benchmark pebble bed configuration and was able to model over 50 million fuel kernels 

including detailed internal structure of the kernels.  

2.3 Chord length sampling methods 

In contrast to explicit Monte Carlo simulation, Murata et al. (Murata et al. 1996 and Murata et al. 

1997) developed an empirical nearest neighbor distribution function for the fuel kernels using a sphere 

packing simulation and used this to sample the location of the next fuel kernel along a neutron trajectory 

in the fuel matrix. Within a fuel kernel, conventional Monte Carlo random walk was employed, 

resolving the detailed structure of the fuel kernel. This approach, which was implemented into MCNP4C 

and the MVP codes (Mori et al. 2000), avoids specifying the locations of the fuel kernels since they are 

encountered "on the fly" during the random walk within the fuel matrix.  

Donovan et al. (Donovan and Danon 2003a, Donovan et al. 2003b, and Donovan and Danon 2003c) 

have modeled the particle fuel as a binary stochastic mixture and used chord length sampling to 

determine the location of the next sphere during the random walk within the fuel mixture, and applied 

this to a 2D fuel configuration. They extended this approach by treating the random walk within the fuel 

kernels by conventional Monte Carlo and used an empirical distribution function to sample the distance 

to the next fuel kernel. This method was applied to a benchmark fuel pebble cell with excellent results. 

The chord length distribution function within the fuel matrix was determined from a sphere packing 

simulation using random sequential addition (RSA) (Widom 1966 and Torquato 2002) to insert the 

kernels into the fuel matrix. This method is very similar to the method of Murata (Murata et al. 1996), 

with the primary difference being the way the empirical chord length distribution function was 

determined.  

2.4 Single realization of stochastic geometry 

An alternative approach is to generate a realization of the stochastic geometry and explicitly analyze 

this configuration with traditional random walk Monte Carlo. This is the approach taken in the Monk 

code  (Armishaw et al. 2003). 



3. Description of stochastic geometry capability for MCNP5 

3.1. MCNP5  geometry overview 

MCNP5 permits a very general, detailed representation of 3D geometry. Volumes in space called 

cells are defined in terms of their bounding surfaces. Surface types include planes, quadrics, and tori 

(aligned with a major axis). Alternatively, users may specify macrobodies (e.g., sphere, finite cylinder, 

ellipsoid, etc.), which are converted internally into individual surfaces. Boolean operators (union, 

intersection) and surface-senses (inside, outside) may be used with the surface specifications to precisely 

define the volume enclosed by a cell. Cells may also include the complement of another cell and may be 

composed of non-convex or disjoint volumes. 

Hierarchical geometry may be modeled using the MCNP5 concept of a universe. One or more cells 

may be declared as belonging to a universe, and that universe can then be embedded inside of another 

cell. If the universe geometry is larger that the cell it is embedded in, it is clipped by the enclosing cell. 

Up to 10 levels of embedding are permitted. A variation on the universe concept is a lattice, where a cell 

(which may have an embedded universe) is repeated in 1, 2, or 3 dimensions. Lattice cells may be 

hexahedra (i.e., “bricks”) or hexagonal prisms. 

3.2. MCNP5 stochastic geometry 

We have developed yet another approach to stochastic geometry modeling for MCNP5 which 

roughly combines the 3 previous approaches noted above. For embedded geometry (universe or lattice), 

we have introduced the notion of a random translation. That is, when a neutron enters an embedded 

universe flagged as stochastic, the universe coordinates are transformed randomly according to 

  

x = x + (2 1-1)  X 

y = y + (2 2-1)  Y 

z = z + (2 3-1)  Z 

 

where 1, 2, 3 are random numbers uniformly distributed on (0,1), and X, Y, Z are user-defined 

parameters. Different translation parameters can be declared for different levels of the geometry, and the 

random translations are performed only upon entering universes which the user declares as stochastic. 

To preserve mass and packing fractions, the translation parameters should be chosen such that fuel 

kernels or other objects are not displaced beyond the edges of the enclosing cell or lattice element. This 

capability has been implemented for body-centered cubic (bcc) lattices and is equivalent to "jiggling" 

the sphere randomly within the cubical cell every time the cell is entered. If X, Y, Z are chosen to be 

less than or equal to half the lattice edge, then the sphere will stay entirely within the cell. We are 

examining the application of this methodology to face-centered cubic (fcc) lattices as well as hexagonal 

close packed (hcp) lattices and will report on this at a later date. 

In addition to the random translation applied to a neutron entering a stochastic universe, special 

treatment is needed for saving the fission sites in an eigenvalue calculation. When a fission occurs and 

the site parameters are saved in the fission bank, the current values of the random translation parameters 

must be saved along with the normal fission site data. In the next cycle of the calculation, these saved 

translation parameters are used for the neutron starting at that fission site, so as to continue the flight 

from the same stochastic realization in effect when the site was saved. 



While this approach has similarities to the previous approaches noted above, there are some 

advantages: This approach retains the simplicity of setting up a regular lattice in the MCNP5 input. 

Randomness is introduced directly through displacing the universe geometry, and conventional Monte 

Carlo random walk is utilized throughout the simulation, avoiding the determination and use of chord 

length distribution functions. Each time a neutron enters a stochastic universe, a new random sample of 

the displacements is made, avoiding the possible repetitions which could occur in the single-realization 

approach. Finally, the use of on-the-fly random translations does not incur the large memory 

requirements of the single-realization approach. 

The MCNP5 stochastic geometry approach does not require any significant memory storage, nor 

does it noticeably increase the running time for a problem. It provides a relatively simple method for 

modeling stochastic HTGR geometry. 

4. Simulation results 

4.1 Verification methodology 

The stochastic geometry capability has been verified by comparison with several independent 

simulations of particle fuel configurations. The independent calculations are described next, followed by 

the numerical results. All fuel kernel configurations correspond to an infinite array of fuel kernels in a 

graphite matrix. The fuel kernel geometry and composition was taken from the NGNP Point Design 

(MacDonald et al. 2003) and is reproduced in Table 1 for convenience.  

 

Table 1. TRISO Fuel Kernel Geometry and Composition 

 

Region # Name Outer radius (µ) Composition Density (g/cc) 

1 Uranium oxycarbide 175 UCO (UC
.5
O

1.5
) 10.5 

2 Porous carbon buffer 275 C 1.0 

3 Inner pyrolytic carbon 315 C 1.9 

4 Silicon carbide 350 SiC 3.2 

5 Outer pyrolytic carbon 390 C 1.9 

 



    

 Fixed lattice with centered spheres. The first configuration analyzed was a 5x5x5 cubical 

lattice with fuel kernels centered within the cubical cells and reflecting boundaries on the 

outer surfaces. The lattice edge was chosen to preserve the specified packing fraction. 

Although this could have been accomplished with a single cubical cell with a centered 

sphere, the 5x5x5 lattice was chosen to be consistent with our other cases mentioned below. 

 

                          Figure 1. Fixed 5x5x5 Lattice with Centered Fuel Kernels 

 

 Fixed lattice with randomly placed spheres. This is the same as the fixed lattice model 

except the stochastic geometry option is turned on, effectively moving the spheres randomly 

within the 5x5x5 cubical cells.     

 

                 Figure 2. Fixed 5x5x5 Lattice with Randomly Placed Fuel Kernels 

 

 Multiple lattice realizations. The mcnp_pstudy utility (Brown et al. 2004) was used to create 

25 different input files for the 5x5x5 configuration, each a single realization of the stochastic 

lattice model above. These 25 cases were run independently and the keff results were 

averaged. 



 

 Box of randomly placed fuel kernels. This configuration is a "box" equivalent to the 5x5x5 

lattice that is packed randomly with 125 fuel kernels using RSA. The box has reflecting 

boundary conditions on all sides. The mcnp_pstudy utility was used to create MCNP5 input 

decks from 25 realizations of these randomly packed boxes. These 25 cases were run 

independently and the keff results were averaged.   

 

 

   

 

       Figure 3. Two different planar slices through a single realization of the stochastic fuel box  

 

4.2 Numerical results 

Table 2 summarizes the results for the cases described above.  

 

                  Table 2. MCNP5 Results for Infinite Lattices of Fuel Kernels 

 

# Method K-effective 

1 Fixed 5x5x5 lattice with centered 

spheres 
1.1531 ± 0.0004 

2 Fixed 5x5x5 lattice with randomly 

located spheres ("on the fly") 
1.1515 ± 0.0004 

3 Multiple (25) realizations of  5x5x5 

lattice with randomly located spheres 
1.1513 ± 0.0004 

4 Multiple (25) realizations of randomly 

packed (RSA) fuel "box" 
1.1510 ± 0.0003 

 

There is remarkably close agreement among the three stochastic approaches (Methods 2-4) 

indicating that the stochastic geometry capability (Method 2) is working correctly. Furthermore, the 

effect of fixing the fuel kernels on a cubical lattice (Method 1) is relatively small, less than 0.2% k, at 

least for this configuration corresponding to a packing fraction of approximately 30% for the fuel 



kernels. Considering only the innermost fuel region, this is equivalent to a 2.6% packing fraction, where 

the outer layers of the fuel kernel are included in the matrix region. The computational cost of turning on 

the stochastic geometry option is negligible (Method 1 vs. Method 2) for the lattice simulations reported 

here.    

5. Conclusions 

The new stochastic geometry treatment for MCNP5 provides an accurate and effective means of 

modeling the particle heterogeneity in TRISOL particle fuel. The results indicate that the neutronic 

effect of using a fixed lattice is negligible, and the effect of choosing either a centered spheres or 

randomly located spheres is also small, at least for the specific fuel geometry that was analyzed during 

this study. Future work will include examination of finite geometries, including cylindrical fuel 

compacts, hexagonal fuel blocks, and full core configurations. We will also consider lattices other than 

bcc lattices, such as fcc and hcp lattices.   
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