
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

08-2330

Implementation of Pulse Height Tally Variance Reduction in
MCNP5

Jeffrey S. Bull
Thomas E. Booth
Avneet Sood

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Implementation of Pulse
Height Tally Variance
Reduction in MCNP5

Jeffrey S. Bull & Thomas E. Booth

MCNP5 1.50 Release – Supporting Document

July 9, 2008

LA-UR-08-2330

Slide 1
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Abstract

One of the new features in MCNP5 1.50 is pulse
height tally variance reduction (PHTVR). These
viewgraphs summarize how PHTVR was implemented in
MCNP and the modifications to the code needed to
support PHTVR.

Slide 2
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Outline

• Introduction

• Building the pulse height variance reduction trees

• Scoring the pulse height tally (debranching)

• Implementation with OpenMP

Slide 3
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Pulse Height Tallies and Variance Reduction

• History
– Theory developed by Tom Booth

– Monte Carlo Variance Reduction Approaches for Non-Boltzmann Tallies, LA-
12433 (1992)

– Pulse Height Tally Variance Reduction in MCNP, LA-13955 (2004)
– Partial implementation previously in MCNPX

• Pulse height (F8) tallies depend on collections of particles (for
example, the entire particle history)

• Example: Two 1 MeV photons are deposited in one cell
– F1 tally scores two 1 MeV events
– F8 tally scores one 2 MeV event

– Assumes both photons have weight one.
– Not valid if using variance reduction

http://lib-www.lanl.gov/cgi-bin/getfile?00538274.pdf
http://lib-www.lanl.gov/cgi-bin/getfile?00538274.pdf
http://library.lanl.gov/cgi-bin/getfile?01057017.pdf

Slide 4
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Track History Trees
• Need to store all path weights,

particle production, and energy
deposition events for the whole track
history.

• Create “trees” which recreate the
track history

• Tree nodes represent events
(importance splitting, particle
creation, etc)

• Path weights and energy deposition
are associated with the tree
branches. They record changes
between nodes (events).

• At the end of the history, the tree is
“debranched” into possible physically
occurring subtrees, and energy
deposition is calculated for each
possible physically occurring subtree

Slide 5
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Tree Nodes Types
• Physical Node

– Represent particle creation and other
physical (real) events

– All branches are followed as part of the
history

– When debranching, subtrack must
include all branches of the node

• Variance Reduction Node
– Represents importance splitting and

other variance reduction events
– Each branch represents an alternative

path the particle could take
– When debranching, each branch of the

node creates a new subtrack

• Terminate Node
– Represents particle termination event
– There are no branches under these

nodes.

Node

Wgt1
Eng_dep1

Wgt2
Eng_dep2

Wgt3
Eng_dep3

Slide 6
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Code development

• Development History
– Tom Booth did the original coding
– Avneet Sood updated it to MCNP5 1.22
– Jeff Bull updated it to current version of MCNP5

• Code Development Goals
– Produce same results (within statistics) as analog case
– Minimize the memory requirements
– Execute efficiently
– Conform to modern coding style

Slide 7
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Building the Trees, Node by Node
• To better manage the array sizes, the

maximum number of branches per node
is 2.

• During transport, the particle must know
where it is in relation to the tree.

– Added 2 variables to PBLCOM
– node_above
– branch

• Variable n_nodes
– Number of nodes in the history

Node n

Node n1 Node n2

branch_wgt(n, 1, ktask)
branch_wgt(n, 2, ktask)

node_below(n, 1, ktask) = n1 node_below(n, 2, ktask) = n2

• Tree Arrays (all are dynamic arrays)
– n_branches(n_nodes,ktask) (i1_knd) - number of branchs, & node type

(+ = var redu, - = phys, 0 = term.)
– branch_wgt(n_nodes,branch,ktask) - branch weight
– node_below(n_nodes,branch,ktask) - node below node and branch

Slide 8
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Building the Trees, Creating the nodes

• Most physical and variance reduction nodes are created
in the new subroutine phtvr_bankit_particle, called from
bankit.
– Exceptions:

– Dxtran
– Implicit Capture
– Forced collisions
– Pair production
– Annihilation photons

• Call to subroutine phtvr_bankit_particle controlled by flag
phtvr_bankit_flag

Slide 9
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Creating Physical Nodes

• New single particle nodes are created in phtvr_bankit_particle

• Particles are not always banked in the correct order for the PHTVR
trees
– Particles created by weight window splitting and esplt/tsplt are banked

before the physical particle.
– The flag make_physical_node is used to signal if the physical node

needs to be created before the variance reduction node

• Particle may be created but not banked
– May be rouletted instead
– Instead of creating a new node, zero the branch weight. This is

equivalent to creating a new physical node and then rouletting the new
particle

Slide 10
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Building the Trees – Importance Splitting
• Particles can split into

several new tracks, each
with the same weight

• All but one of the new tracks
are banked

• Need to convert to a binary
tree

– Create additional VR nodes
– Set branch weight between

nodes to one

• Used for cell, time, and
energy importances, and
weight windows

• For noninteger splitting, the
expected value is used as
the branch weight.

VR split
node

W = 1/3

W = 1/3
W = 1/3

bank

track

bank

VR split
node

W = 1/3 W = 1

bank VR split
node

W = 1/3

bank

W = 1/3

Original Node

Equivalent binary node

track

Slide 11
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Building the Trees – Roulette

• In roulette games with
survival probability p_s,
particles are either killed
with probability 1-p_s
(rouletted), or survive
with the weight increased
by a factor of 1/p_s.

• Set the branch weight to
0 for rouletted particles,
or increase by R

• Roulette can be turned
off for pulse height tallies
in MCNP using the VAR
card

W = w1 W = w2

W = 0 W = w2
W = w1 / p_s

W = w2

Original Node

Killed
Survives

R = impin /impout

Slide 12
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Building the Trees – Forced Collisions

• For forced collisions, the
track is split into collided
and uncollided parts.

• Create a Variance
Reduction node with
branch weights
corresponding to the
probability of a collision in
the cell

Var Red
node

probability of the
particle not colliding in
the cell

collided particleuncollided particle

bank track

W =

probability of the particle
colliding in the cell /
survival probability (value
on the fcl card)

W =

Slide 13
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Building the Trees – Exponential Transform

• The exponential
transform biases the
distance to collision by
sampling from a fictitious
density and adjusts for
this by multiplying by the
ratio of the true
probability to the biased
probability

• For PHTVR trees, adjust
the branch weight of the
particle by wc

W = w1 W = w2

Original Node

W = w1* wc W = w2*wc

After exponential transform

wc = true probability /
biased probability

Slide 14
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Building the Trees – Source Biasing

• Source biasing only
changes the weight of the
source particle

• For PHTVR trees, adjust
the branch weight source
particle (node zero)

Node 1

Node 0 Source particle

W = weight of source particle

Slide 15
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

DXTRAN

• DXTRAN splits the particle
history into two parts:
1) the part that enters the DXTRAN

sphere on the next flight (the
DXTRAN particle)

2) the part that does not enters the
DXTRAN sphere on the next flight

• Create Variance Reduction node
with DXTRAN particle branch
weight equal to the ratio of the
new DXTRAN particle weight to
the original particle weight

• If the non DXTRAN particle hits
the dxtran sphere on the next
flight, its branch weight is set to
zero (killed)

Var Red
node

DXTRAN particle

Bank dxtran particleContinue tracking

W = 1 or 0, if particle
hits a DXTRAN sphere
on the next flight

non DXTRAN
particle

dxtran particle
weight /
incoming
particle weight

W =

Slide 16
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

DXTRAN: Single particle created

• Create physical node for
the new particle,
followed by a variance
reduction node for the
dxtran particle

Coding Note: Since MCNP creates
and banks the dxtran particle
before producing any of the
physical particles, special coding
is required to create the physical
node before the variance
reduction node.

Physical
node

Var Red
node

DXTRAN
particle

Track
continuing
particle

W = 1

non DXTRAN
particle

dxtran particle weight /
incoming particle weight

1, or 0 if particle hits
a DXTRAN sphere
on the next flight

W1 =

Bank
Bank

W2W1

W2 =

W = 1

Slide 17
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

DXTRAN: Double Fluorescence

• Assumes no correlation
between photons

• Create DXTRAN particle for
both fluorescence photons

• 4 possible outcomes
– Neither particle hits dxtran

sphere
– 1st photon hits the sphere

and 2nd misses
– 2nd photon hits the sphere

and the 1st misses
– Both photons hit the sphere

• The tree can be reduced to
that shown on the right

Physical
Node

Var. Red.
Node

Var. Red.
Node

non
dxtran dxtran

Hits dxtran
sphereMisses

dxtran
sphere

non
dxtran dxtran

Hits dxtran
sphere

Misses
dxtran
sphere

1st fluorescence
photon

2nd fluorescence
photon

See Pulse Height Tally Variance Reduction in MCNP, LA-13955 (2004) for details

http://library.lanl.gov/cgi-bin/getfile?01057017.pdf

Slide 18
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

DXTRAN: Annihilation Photons

• There is a correlation between the
annihilation photons
– Both photons cannot hit the dxtran

sphere

• For non-F8 tallies, only one
annihilation photon is created.
– The weight balance is preserved

by killing the non-dxtran particle if
it hits the dxtran sphere.

• F8 tallies require that both
photons be tracked
– To preserve the weight balance, if

one non-dxtran photon hits the
dxtran sphere, both non-dxtran
photons must killed, and not
contribute to any of the tallies

Var. Red
Node

Physical
Node

Physical
Node

non
dxtran dxtran dxtran

Dxtran event

Annihilation photons

non
dxtran

On dxtran
sphere

At collision point
away from the
dxtran sphere

Slide 19
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

DXTRAN: Annihilation Photons (2)

• Problems with creating both
annihilation photons
– The photon traveling towards the

sphere could have split before it
gets there, with some particles
hitting the sphere and others
missing it.

– Other photons could have
contributed to several tallies,
which would need to be undone

• Solution
– score nonF8 tallies only with the

dxtran photon on the sphere
(traditional method)

– Create flag scoring_particle in
PBLCOM to track scoring status

Var. Red
Node

Physical
Node

Physical
Node

non
dxtran dxtran dxtran

Dxtran event

Annihilation photons

non
dxtran

On dxtran
sphere

Away from
dxtran sphere

Contributes
only to F8 tallies

Slide 20
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Annihilation Photons with Multiple DXTRAN Spheres

Cone for
both spheres

Cone for
both spheres

PHTVR and positron decay requires
creating both 0.511 dxtran
photons

• There are 4 possible outcomes:
– neither particle hits the spheres

(non-dxtran photons)
– one particle only hits sphere 1
– one particle only hits sphere 2
– both particles hit a sphere

Slide 21
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Annihilation Photons with Multiple DXTRAN Spheres (2)
Solution

• create nondxtran pair
• create dxtran annihilation pair for 1st

dxtran sphere
• if the away dxtran photon can hit a

2nd dxtran sphere, then

– create another variance reduction
node

– under this node start one photon at
the collision point

– 2nd photon is put on the 2nd dxtran
sphere with a branch weight of the
attenuation factor divided by two.

• create dxtran annihilation pair for
2nd dxtran sphere

– create another variance reduction
node

– under this node start one photon at
the collision point

– 2nd photon is put on the 1st dxtran
sphere with a branch weight of the
attenuation factor divided by two.

The tree is shown on the right

Var. Red
Node

Physical
Node

non
dxtran

non
dxtran

On 1st

dxtran
sphere

1st dxtran
branch

Physical
Node

Var. Red
Node dxtran

Away from dxtran
sphere photon

dxtrandxtran

At the collision point
On 1st dxtran
sphere

Branch Weight =
attenuation factor/2

Non-dxtran
branch

On 2nd dxtran
sphere

Physical
Node

Var. Red
Node dxtran

dxtrandxtran

At the collision point

2nd dxtran branch

On 2nd dxtran
sphere

Branch Weight =
Attenuation
factor/2

Slide 22
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Energy Deposition Storage

• The same branch weights are used for all F8 tallies

• The energy deposited on each branch is unique for each F8 tally
cell/user bin combination.

• Need to store the energy deposited on each branch for each F8
tally/cell/user bin.

• To store energy depostion, use a derived structure with array
elements for the different tally bins: Eng_dep(F8_tally, cell, user_bin)
– Structure array elements (all dynamic):

– counter(ktask) - Number of node/branch combos which has eng dep
– node_branch(counter, ktask) - Encoded values of node/branch combination
– erg_deposited(counter,ktask) – Energy deposited under corresponding

node/branch combination

Slide 23
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Debranching

• To score the tally at the end of the history, need to debranch the tree
into individual subtracks (possible choices)

• The result is several energy_deposition/weight pairs (choices)
– These choices are scored individually in the pulse height tally

• Variance Reduction nodes
– Max number of new choices is sum of choices under node

• Physical node
– Max number of new choices is product of choices under node

• Number of choices has an upper limit (currently 200)

Slide 24
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Debranching process – start from terminal node

Var Red
node

T T

E2 ,w2
E1 ,w1

Choice 1: deposit E1 with weight w1

Choice 2: deposit E2 with weight w2

Physical
node

T T

E2 ,w2
E1 ,w1

Choice 1: deposit E1 + E2 with weight w1 *w2

Slide 25
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Debranching process – choices below nodes
Var Red

node

E2 ,w2
E1 ,w1

Choice 1: deposit E1 + Ep1 with
weight w1 *wp1

Physical
node

E2 ,w2
E1 ,w1

Choice 1: deposit E1 + E2 + Ep1 + Ep21
with weight w1 *w2 *wp1 *wp21

Ep1 ,wp1

Ep21 ,wp21
Ep22 ,wp22 Ep1 ,wp1

Choice 2: deposit E2 + Ep21 with
weight w2 *wp21

Total # choices = bc1 * bc2

branch choices =bc2

branch choices =bc2# branch choices =bc1 # branch choices =bc1

Total # choices = bc1 + bc2

Choice 2: deposit E1 + E2 + Ep1 + Ep22
with weight w1 *w2 *wp1 *wp22

Ep21 ,wp21
Ep22 ,wp22

Choice 3: deposit E2 + Ep22 with
weight w2 *wp22

Slide 26
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Debranching variables

• Module variables
– Energy, weight pairs are stored in two indexed arrays:

• de_br_eng_dep(:,:) ! Debranched energy deposition for each node

• de_br_wgt(:,:) ! Debranched weights for each node

• de_br_start(:,:) ! Starting index for each node in the de_br_eng_dep and de_br_wgt arrays

• de_br_end(:,:) ! Ending index for each node in the de_br_eng_dep and de_br_wgt arrays

• n_choices(:,:) ! Number of choices for each node

Slide 27
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Limiting the Number of Choices

• Combine all zero and low energy depositions (particles that just pass
through the cell) into two choices

• Cull choices
– Different culling methods are used depending on the type of node
– Physical nodes

– Reduce 40,000 possible choices to 200
– use a roulette “combing method”

– Variance reduction nodes
– Reduce 400 possible choices to 200
– Remove the lowest weight choices so that 200 choices are left after culling.
– Keep one of the lowest choices and adjust weight to compensate removing

the others

Slide 28
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Dynamic Arrays and OpenMP

• Several arrays need to be increased during particle
transport

• OpenMP Retrictions
– Only the master task can increase array sizes
– No task can be accessing the array when size is increased.

• Need to coordinate between tasks during transport and
pause the subtasks when memory needs to be increased

Slide 29
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

OpenMP coding

• Set up arrays and flags to signal subtasks

• Use !OMP FLUSH (variable) directive
– Immediately updates/reads current value of variable

• All arrays are increased in one subroutine

• Array sizes can be increased only if subtasks are
– Waiting for memory to be increase
– Is not in the transport or debranching sections
– Subtask has exited trnspt for tally updates, write to runtpe, etc

Slide 30
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

When an array size needs to be increased
• Master task

– Calls increase_phtvr_arrays
– Waits until other subtasks have paused or are not in the transport loop
– Sets lock by calling sm_lon
– Increases array sizes
– Removes lock by calling sm_loff

• Subtasks
– Signal other tasks that it needs to increase memory
– Pause until master task signals that array size has been adjusted

• All tasks check whether memory needs to be increased
– Before particle history begins (call to RN_init_particle) in trnspt
– Before exiting trnspt

– The master task is not allowed to exit trnspt until all the subtasks have
finished

Slide 31
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Increasing the dynamic arrays

• 3 variables store the current array sizes
1. Max_n_nodes – tree building and some debranching arrays
2. leng_de_br_arrays – debraching arrays
3. eng_dep(i_tal,i_cell,i_usr_bin)%max_counter – energy deposition

arrays for talph.

• Array increase_memory is used to signal which arrays
need to be increased.
– If sum(increase_memory) > 0, signals tasks that memory needs

to be increased

• Subroutine increase_phtvr_arrays increases the arrays

Slide 32
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Coordination of subtasks (OpenMP)
• Coordination variables

– threads_stopped(ntasks-1) Flag for which threads are not transporting particles
either they are paused or not in particle trans. loop

– threads_running(ntask-1) Flag for which threads are currently running;
set in trnspt.

– master_thread_locked Flag for when the master thread has placed a lock
on the other threads; subtasks exit from do loop and call sm_lon

• When sum(threads_stopped) = sum(threads_running) the master task can
increase the arrays sizes

• increase_memory is checked
1. Before call to startp
2. Before exiting trnspt

• Also, the master task will call increase_phtvr_arrays if it needs more
memory

Slide 33
Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Restrictions and Defaults

• No phys:e card variance reduction techniques
– Enum, rnok, bnum, xnum,

– Set to 1 if not equal to 1 or 0

• Russian Roulette
– On by default
– Can be turned off with the VAR card

• Weight cutoffs
– Default to zeros unless

– explicit values included on cut:p or cut:e card.
– forced collisions are used (use default values if no values are

provided)

	PHTVR_Implmt_cover
	PHTVR_Implementation
	Implementation of Pulse Height Tally Variance Reduction in MCNP5
	Abstract
	Outline
	Pulse Height Tallies and Variance Reduction
	Track History Trees
	Tree Nodes Types
	Code development
	Building the Trees, Node by Node
	Building the Trees, Creating the nodes
	Creating Physical Nodes
	Building the Trees – Importance Splitting
	Building the Trees – Roulette
	Building the Trees – Forced Collisions
	Building the Trees – Exponential Transform
	Building the Trees – Source Biasing
	DXTRAN
	DXTRAN: Single particle created
	DXTRAN: Double Fluorescence
	DXTRAN: Annihilation Photons
	DXTRAN: Annihilation Photons (2)
	Annihilation Photons with Multiple DXTRAN Spheres
	Annihilation Photons with Multiple DXTRAN Spheres (2)
	Energy Deposition Storage
	Debranching
	Debranching process – start from terminal node
	Debranching process – choices below nodes
	Debranching variables
	Limiting the Number of Choices
	Dynamic Arrays and OpenMP
	OpenMP coding
	When an array size needs to be increased
	Increasing the dynamic arrays
	Coordination of subtasks (OpenMP)
	Restrictions and Defaults

