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Adjoint-Weighted Tallies for k-Eigenvalue Calculations with Continuous-Energy Monte Carlo

Brian C. Kiedrowski, Forrest B. Brown, Paul P.H. Wilson

Abstract – A Monte Carlo method is developed that performs adjoint-weighted tallies in continuous-energy

k-eigenvalue calculations. Each contribution to a tally score is weighted by an estimate of the relative

magnitude of the fundamental adjoint mode, by way of the iterated fission probability, at the phase space

location of the contribution. The method is designed around the power iteration method such that no

additional random walks are necessary, resulting in a minimal increase in computational time. The method

is implemented in the Monte Carlo N-Particle (MCNP) code. These adjoint-weighted tallies are used to

calculate adjoint-weighted fluxes, point reactor kinetics parameters, and reactivity changes from first-order

perturbation theory. The results are benchmarked against discrete ordinates calculations, experimental

measurements, and direct Monte Carlo calculations.

Keywords – criticality; kinetics parameters; perturbation theory
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1 Introduction

The Monte Carlo method is applied successfully to many types of reactor physics calculations[1]. However,

one area where continuous-energy Monte Carlo methods have been lacking[2] for reactor problems is in

the area of adjoint functions (often colloquially called adjoint fluxes) or importances[3]. Many quantities

in reactor physics, such as those found in reactor kinetics or perturbation theory, are ratios of integrals

of adjoint-weighted quantities[4][5]. A new method is developed using a forward simulation that weights

particles by the iterated fission probability[6], a quantity proportional to the adjoint function.

Historically, adjoint methods in Monte Carlo have involved a “backwards” approach. Physically, the

adjoint equation describes particles traversing backwards from detector to source. This can be simulated

through inversion of the random walk: particles stream in the opposite direction and scatter opposite to the

normal energy transfer[7]. These are rarely used in production codes because inverting the scattering laws

used in continuous-energy-angle calculations is complicated.

Recently, there has been interest in adjoint weighting in k-eigenvalue calculations. Early work uses an

approximate importance weighting factor, a one generation approximation of the iterated fission probability,

to weight tally scores. A multigroup code KENO that is part of the SCALE code system[8] spawns artificial

secondary pseudo-particles each track, follows them only in the current generation, computes an estimate

of k based on their tracks, and uses this as the importance weighting factor for the track that spawned the

pseudo-particles[9]. Other efforts[10][11] use the probability of a track having a fission neutron as a weighting

factor to compute kinetics parameters using continuous-energy physics in a modified version of the Monte

Carlo N-Particle (MCNP) code[12].

More recent work[13][14] uses the correct importance weighting factor[6]. The authors in [13] compute

adjoint functions by varying the initial source in a k-eigenvalue calculation. The iterated fission probability

(adjoint function at the source location) is estimated by looking at the product of collision estimates of k

from the initial source. In [14], the authors manually fold multigroup results with fluxes in a converged

k-eigenvalue calculation to compute multigroup estimates of neutron generation times. Unfortunately, this

approach does not produce continuous-energy estimates despite using a continuous-energy simulation because

of the post processing of region averaged quantities.

A method is developed for k-eigenvalue problems that performs adjoint weighting of tallies during a

forward power iteration method. Furthermore, with the appropriate accounting and definitions, there is no

need for any additional random walks; the increased computational time is small. This paper specifically

focuses on the theory and methods of computing adjoint-weighted quantities. Specifically, much attention is

focused upon the development of the tallies for computing reactor kinetics parameters and reactivity changes
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using perturbation theory. Results, along with validation and verification are summarized here; additional

calculations illustrating practical examples to a reactor physicist are given in [15].

2 Method Development

Before developing the method to perform adjoint weighting, theoretical background of the adjoint function in

a k-eigenvalue problem is reviewed. Specifically, the iterated fission probability is shown to be proportional

to the importance or adjoint function. With these insights, it is possible to apply this theory to develop a

method that weights each tally contribution (e.g., an individual track length) in a continuous-energy Monte

Carlo simulation by its importance. Finally, details of the algorithm that fits nearly seamlessly within the

production code, MCNP5, are discussed.

2.1 Adjoint Functions in k-Eigenvalue Problems

Before developing the specific method, it is first important to understand the nature of the k-eigenvalue

problem:

Hψ =
1
k
Fψ. (1)

H is the transport operator containing the terms for streaming, collisions, and scattering. F is the fission

operator for both prompt and delayed emission. ψ is the angular flux and k is the eigenvalue.

This equation can be solved with the power iteration method given some initial condition on the fission

source in the zeroth generation. Assuming the reactor is critical, k = 1, these source neutrons will have

progeny. Eventually, these progeny will be distributed throughout the reactor corresponding to the fun-

damental eigenmode. The shape is independent of the source; however, the amplitude of the fundamental

mode does depend upon the initial condition[4].

The adjoint k-eigenvalue equation,

H†ψ† =
1
k
F†ψ†, (2)

is quite similar. The adjoint function, ψ†, corresponds to the expected contribution to some prescribed

detector response resulting from neutrons at the current location and all its progeny. In the adjoint equation,

the role of source and detector are reversed. Also, time or generations move in the opposite direction[16].

The physical interpretation of (2) can be obtained with a heuristic example. Suppose a detector is placed

in a large reactor (the mean distance a neutron traverses within a generation is small relative to the reactor
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size) and prescribed to take a reading exclusively in some generation called the detector (or asymptotic)

generation. In generations just prior the detector generation, the neutrons whose progeny will be most likely

to contribute will be nearest the detector. Conversely, neutrons far away are less likely have their progeny

reach the detector in the specific generation when it is accepting contributions. For very many generations

prior to the detector generation, the neutrons that are more able to form persisting fission chains are more

likely to have their progeny contribute to the detector; a chain that goes extinct will not be able to contribute.

Further, in a sufficient generation prior to the detector generation, a neutron has had sufficient “time” to

reach any other point in the reactor and is therefore independent of its proximity to the detector. Thus, only

the ability to produce a persisting chain matters with respect to contributing to the detector, and therefore

this corresponds to the importance or fundamental adjoint mode.

Formally, the iterated fission probability interpretation of the adjoint function can be demonstrated by

considering the time-dependenta forward and adjoint transport equations:

1
v

∂ψ

∂t
+ Hψ = Fψ, (3)

−1
v

∂ψ†

∂t
+ H†ψ† = F†ψ†. (4)

v is the neutron speed and t is time. Multiply (3) by ψ†, and multiply (4) by ψ. Integrate the results over

all position r, energy E, direction Ω̂, and time from t = 0 to t = td where td >> 0, and take the difference.

Because of the adjoint relationship (where A is a generic linear operator and the brackets denote an inner

product integration of position, direction, and energy),

�
ψ†,Aψ

�
=

�
ψ,A†ψ†� , (5)

the transport and fission terms cancel out, and the following relationship remains:

�
ψ†,

1
v
ψ

�

t=0

=
�

ψ†,
1
v
ψ

�

t=td

. (6)

This generic relationship will be applied to a reactor in a critical configuration. For systems that are not

critical, the forward and adjoint functions are, in general, time-dependent even though the relationship in

Eq. (6) holds. Only the critical case need be considered in the context of the k-eigenvalue problem because

neutron balance from one generation to the next is enforced artificially by the application of the 1/k factor.
aWhile the k-eigenvalue equation is time independent. It is only the asymptotic behavior that is of interest, and late times

and generations are equivalent.
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An arbitrary detector with response function R(r, Ω̂, E) is turned on during the time interval td − dt to

td, after which the detector is turned off forever. This leads to the final condition on the adjoint function,

ψ†(r, Ω̂, E, td) = R(r, Ω̂, E). (7)

The initial condition on the forward equation must be specified as well. For this, a point source is

introduced into the reactor at t = 0, which can be expressed mathematically as

ψ(r, Ω̂, E, 0) = v0δ(r− r0)δ(Ω̂− Ω̂0)δ(E − E0). (8)

δ is the Dirac delta function. While the source is still arbitrary, the reason for selecting a point source

is to solve for the fundamental adjoint function at a single point in phase space. Since td is sufficiently

large, only the fundamental modes of the forward and adjoint equations will remain at t = td and t = 0

respectively:

ψ(r, Ω̂, E, td) = A(r0, Ω̂0, E0)ψ0(r, Ω̂, E), (9)

ψ†(r, Ω̂, E, 0) = Cψ†
0(r, Ω̂, E), (10)

A is the amplitude that depends only upon the location of the initial source[4]. Likewise, C is some

constant whose value depends only upon the detector response function R. ψ†
0 is independent of the detector

response R as ψ0 is independent of the initial source.

Substitute equations (8), (9), and (10) into (6) to find:

ψ†
0(r0, Ω̂0, E0) =

1
C

A(r0, Ω̂0, E0)
�

R,
1
v
ψ0

�
. (11)

The fundamental adjoint mode at some location in phase space (r0, Ω̂0, E0) is proportional to the am-

plitude A induced by a unit source at that point and some integral of the neutron density multiplied by the

detector response. Since the fundamental adjoint shape is independent of the choice of the detector, R only

impacts the magnitude of the multiplicative constant C. In other words, the choice of detector does not

impact the fundamental adjoint shape.

An interesting choice is to make the detector response unity everywhere, R = 1. The inner product in

(11) is the total neutron population in the entire reactor. The term within the integrals is then a constant

related to the prescribed power level of the reactor. For this choice, the adjoint is proportional to only the
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amplitude function A. This is sometimes called the iterated fission probability interpretation of the adjoint

function and forms the basis for the adjoint weighting method.

The normalization of the forward and adjoint eigenfunctions is arbitrary and only impact their physical

meaning and units. The absolute magnitude of either eigenfunction at any one location of phase space is,

other than for the aforementioned reasons, meaningless. What is meaningful are their magnitudes relative

to those at other phase space locations.

2.2 The Adjoint-Weighted Tally

The goal of the method will be to weight an arbitrary tally contribution T (could be flux in a region, current

crossing a surface, or just about anything else) by the adjoint function at the phase-space location of that

contribution. This tally contribution must be remembered, and the expected detector response of its progeny

R many generations in the future must then be found. The tally contribution is weighted by the detector

response of the progeny to form the score for the adjoint-weighted tally.

The choice of the detector response is arbitrary so long as the function is well-behaved and non-negative

everywhere. The convenient choice, however, is the iterated fission probability case of counting the neutron

production everywhere in the reactor in some sufficiently distant generation, or asymptotic population.

This is chosen in the design for a few practical reasons. First, the choice of detector is irrelevant so long

as a well behaved one is chosen. Secondly, the iterated fission probability has historical application to early

methods for reactivity changes with perturbation theory[6]. The third, and more important, reason relates

to statistical convergence. Having the “detector” cover the entire reactor yields many more responses than

if it is localized. From a statistical point of view, more scores to a tally are typically better than fewer and

are less prone to noise. Therefore faster statistical convergence can be achieved by this choice. Another

important reason is that global quantities tend to approach a steady state value faster than localized ones

(for example, k almost always converges faster than the detailed fundamental fission source shape), so fewer

generations are required between scoring tally contributions and detector responses.

The series of fission generations over which the calculation is performed is called a block. The neutrons

in the first generation, or original generation, of the block are called progenitors (a more rigorous definition

is forthcoming in Sec. 2.3) because they may go on to have progeny, and their ancestry is important in

performing the adjoint weighting. In the original generation, neutrons that contribute to a tally that needs

importance weighting have their contributions T recorded as if there is to be no importance weighting, and

these neutrons are tagged with a progenitor index p. This progenitor index is passed on to all subsequent

progeny. The generation where the asymptotic population (detector response R) is calculated is called the

asymptotic generation because it is assumed that the expected population has converged by that generation.
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The generations in between these are called latent generations, since the progeny are simply “waiting” to

achieve asymptotic behavior; nothing is done in these generations other than what occurs in a standard

calculation.

The score S for progenitor p to an adjoint-weighted tally is

Sp = RpTp. (12)

The tally contribution Tp is an arbitrary tally score in a standard Monte Carlo calculation, but only for

neutron paths with a progenitor index p. Rp is the corresponding asymptotic population. This quantity is

scored by summing the neutron production estimates for all tracks of all neutron histories in the asymptotic

generation having inherited a progenitor index p. The estimator for Rp can be expressed mathematically as

Rp =
�

τ∈p

νΣfw�. (13)

The detector contribution sums over all tracks τ in the asymptotic generation that have progenitor index

p. ν is the average number of neutrons per fission, and Σf is the macroscopic fission cross section of the

current material at the current particle energy. w is the current particle weight, and � is the length of track

τ . The units of the asymptotic population, and hence the adjoint weighting factor, are fission neutrons per

progenitor neutron (or dimensionless). The Monte Carlo implementation discussed in this paper preserves

these units; however, it is possible to normalize the adjoint weighting factor in other ways.

2.3 Definition of the Progenitor

Before providing an example of how Tp and Rp are estimated to compute Sp, it is first important to formally

define the progenitor. The concept of importance gives the expected detector response for a neutron intro-

duced at a point in phase space. For a given Monte Carlo history, all points within a track can be considered

a random trial to be importance weighted. Since these points share a common future (and therefore a com-

mon random estimate of the asymptotic population) it makes sense to assign the same progenitor index p

to all points along the track.

However, n,2n reactions, implicit capture, particle splitting, and other variance reduction techniques

create branches in the fission chain. These branching events necessitate a splitting of the progenitors within

a history such that they form a tree-like structure. It does not make causal sense to weight the tally

contributions in one branch of a particle history by the detector responses caused by another. Therefore,

some rigorous notion of the progenitor must be defined that preserves the causality of the random walk, and
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therefore the result of the adjoint-weighted tally.

First, consider each random walk state within a single history Xi containing all state information: po-

sition, direction, energy, weight, etc. These random walk states are enumerated such that X0 is the fission

source state. Next, define a set Ξ0 that contains only the state X0, and other sets Ξ that contain all ordered

states in between each source, branching, or fission neutron producing event (such as from implicit capture)

within the random walk sequence.

The set of random walk states defining a progenitor with set Π consist of unions of various sets Ξ. Criteria

are defined such that the tallied importance weights are multiplied in causal ways. These criteria are:

1. The progenitor Π0 is always a progenitor containing only Ξ0 regardless of other criteria.

2. All sets Ξ must be causal and within the same fission generation.

3. The causal sets Ξ always extend back to the fission source set Ξ0.

4. The progenitor may only terminate upon the production of a fission neutron for the next generation.

5. The progenitor must be unique.

To illustrate this, consider an example in Figures 1 and 2. A neutron is emitted from the source and

undergoes an n,2n reaction. One of the branches goes on to produce a fission neutron and then terminates

from the weight cutoff. The other produces a fission neutron, goes on (because of implicit capture) to have

a scattering event followed by another fission neutron production, and then continues to leak out of the

system.

For this example, there are six sets Ξ illustrated in Figure 1 and four progenitors Π displayed in Figure

2. To explain, Π0 contains set {Ξ0} because of condition 1. Π1 contains sets {Ξ0,Ξ1,Ξ2} and Π2 contains

sets {Ξ0,Ξ1,Ξ3} because they form causal chains going back to the fission source specified by conditions

2 and 3, and terminate with a fission neutron production because of condition 4. Conversely, {Ξ2,Ξ3} is

not a progenitor because this union is neither causal nor does it extend back to the fission source. Also,

{Ξ0,Ξ1,Ξ3,Ξ4,Ξ5} is not a progenitor either because it does not terminate with a fission neutron production

as demanded by condition 4. Finally, there are no duplicates because of condition 5.

With this definition, this gives all of the progenitor states that need to be assigned. The definition is

chosen such that the minimum number of progenitors is used: all are uniquely numbered with a different

random walk sequence in the original generation. Note Π0 which is kept as a common point to score all

progeny in the asymptotic generation.

An example of a block illustrating progenitors and the various generation types is given in Fig. 3. The

history in the original generation has one branching event from implicit capture, necessitating two progenitor
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indices enumerated as 1 and 2. Tally contributions Ti and asymptotic populations Rj are displayed in Fig.

3. Table I provides an example of the calculation of the two adjoint-weighted scores Sp.

2.4 Overview of the Algorithm

The template for the adjoint weighting algorithm is the power iteration method. The iterations following

convergence are broken into blocks containing an original generation, L latent generations (L ≥ 0), and an

asymptotic generation for a total of L+2 generations in each block. The computational operations performed

will depend upon the type of generation.

During an original generation, a progenitor candidate is spawned for every source, branching, and fission

neutron producing event. The original tally contributions Tp are recorded for each progenitor candidate;

for reference, a list of tally contributions is given in Table II. The specific nomenclature is defined in the

given reference section. The brackets without a subscript denote integration over all position, angle, and

energy. Those with are averaged over a particular region. When a new progenitor candidate is required, the

current tally contributions are copied to the new candidate to preserve the sequence of contributions back to

the fission source site. Each fission neutron produced for the next iteration must have its progenitor index

associated with it. At the end of the generation, only the progenitor candidates that actually produced

fission neutrons are saved.

For latent generations, the neutrons must remember their progenitor index. While no new progenitor

candidates are created, the neutrons still must pass the information about their progenitors onto their

progeny.

During the asymptotic generation, the detector response (asymptotic population) Rp for all neutrons

sharing a common progenitor is tabulated. At the end of the iteration, the adjoint-weighted scores are found

by taking the products of Tp and Rp and adding these products to the global tally accumulator.

The score itself is the sum over all products tally contribution T and detector response R for all progeny

resulting from the history in the original generation (hence some unique number for the initial source state in

the original generation is kept). This is somewhat different than usual tallies that group scores according to

the history in the current generation. Because the ordering of fission neutrons is not necessarily guaranteed,

progenitors will need to be grouped according to the history they belonged to in the original generation.

Following this, all progenitor information is cleared and the next iteration begins as an original generation.

The process repeats with a new block and continues to do so until the end of the simulation.

The selected algorithm is not the only possible approach, but represents a compromise between compu-

tational expense and memory usage.

It is possible to have multiple overlapping blocks such that neutrons carry a progenitor index for each
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cycle. However, the memory requirements for the current (no overlapping blocks) implementation can be

burdensome depending upon the problem, especially if space-energy resolution in the adjoint-weighted tallies

is required. While starting a block every cycle may indeed be more computationally efficient, the memory

requirements may become too large for many problems when the computational resource available is a

modern desktop computer.

Another proposed implementation is to perform the importance weighting via “pseudoneutrons”. For

every tally contribution (possibly every track), a particle called a pseudoneutron is generated that affects the

calculation in no other way than to estimate an importance weight. This pseudoneutron and its subsequent

progeny are followed some number of generations, and the tally score is multiplied by the scored asymptotic

population from the spawned pseudoneutron. While this is almost free in terms of memory usage, many

problems such as those with significant scattering will run orders of magnitude slower if this implementation

is employed. This implementation was not pursued because such a large potential slowdown is usually

considered unacceptable.

2.5 Further Considerations

A subtle detail is reconciling the impact of a non-analog simulation with the forward interpretation of the

adjoint function. In an analog simulation, what occurs in the next event only depends upon the current state

in phase space (a purely Markov process) – the effect of taking any state of the neutron in its random walk

and following it to calculate a response is the same as if the neutron had been introduced into that point.

Unfortunately, in non-analog simulations, the behavior of the random walk depends upon previous states

through the particle weight w and is, strictly speaking, non-Markovian with respect to the traditional phase

space. The weighting is done in such a way to preserve the expected scores, but it is no longer permissible

to equate taking a snapshot of a neutron in a forward random walk with introducing a hypothetical neutron

at that point because of this extra information carried in the particle weight. It can be shown that the

expected number of eventual progeny produced (detector response) between the analog and non-analog

cases are different by a factor of particle weight w and that this equivalence can be restored by a factor of

C/w at the moment of recording the tally contribution Tp where C is some normalization constant and, for

convenience, will be taken to be unity. This factor of 1/w is applied to each component of Tp making the

tally contributions appear to be not multiplied by particle weight.

Another important consideration is how many generations it takes for the expected detector response

measurement to converge. The answer is not addressed in this paper, but is similar to the issue of fission

source convergence[17] in standard Monte Carlo k-eigenvalue calculations. A few results will be offered

pertaining to convergence, but the exact number of generations required is going to be, like with the conver-
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gence of the fission source, problem dependent. For the test problems in this paper, except where noted, the

number of generations until measuring the detector response is ten. The question of testing for convergence

remains an open topic of research.

3 Applications

The applications of adjoint-weighted fluxes, kinetics parameters, and perturbation theory are used to validate

and verify the method. The validation and verification of the the method is performed with other calculations

with the Monte Carlo N-Particle (MCNP) code and the discrete ordinates Partisn code[18].

3.1 Adjoint-Weighted Flux

Two verification problems are performed. The first is a mono-energetic, bare 1-D slab problem. The adjoint

scalar “flux” and the forward scalar flux are equivalent for the one-speed transport equation[3]. The scalar

flux as a function of position is computed by MCNP, and this is taken to be the reference adjoint function

solution. The adjoint-weighted flux is estimated using the adjoint-weighting routines in MCNP, and an

estimate of the adjoint function is found from the crude approximation,

ψ†
j ≈

�
ψ†, ψ

�
r

�1, ψ�r
. (14)

ψ is the fundamental mode of the forward flux. The brackets denote an integration where the subscript

indicates phase space region r (generally containing a spatial zone and an energy group). This approximation

is only valid when neither the flux nor the adjoint vary too much within the spatial zone of r. Also, the

forward and adjoint function must be isotropic because of the angular integration.

Computing the numerator in equation (14) requires an adjoint weighted flux tally in region r. In fact,

this will be used as the denominator as well. There are many ways to compute a flux in a Monte Carlo

simulation. A preferred method that works generally well is a track-length estimator:

�1, ψ�r =
1
Vr

�

τ

w�δsr. (15)

The estimator sums over all tracks τ that are within region r. The current phase space region of the

track is s and δsr is the Kronecker delta function defined to be one if s = r and zero otherwise. w is the

particle weight, � is the length of track τ , and Vr is the physical volume of region r.

Relating this to the general form in equation (12), Tp is the track-length flux estimator given in (15) but

modified by the weight factor 1/w, and Rp is the usual resulting detector response (asymptotic population)
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measured in some distant generation. The adjoint-weighted flux tally takes the following form:

C
�
ψ†, ψ

�
r

=
1
N

1
Vr

�

p

Rp

�

τ∈p

�δsr (16)

N is the total source weights of all the progenitor histories in the original generation. Note the constant

C is arbitrary and depends upon the characteristics of the detector response function. In doing comparisons

with other calculations, some normalization is needed to get results to match.

To help facilitate the validity of the approximation, the following cross sections are chosen for a 1-D slab:

Σt = 1.0 cm−1, Σγ = 0.1 cm−1, Σf = 0.2 cm−1, Σs0 = 0.7 cm−1, ν = 1.5. Σt is the macroscopic total cross

section, Σγ is the macroscopic capture cross section, and Σs0 is the macroscopic cross section for isotropic

scattering. A slab with a half-thickness of 10 cm is used. The mean free path in this slab is 1.0 cm and

scattering is isotropic; the adjoint solution should be valid in about the inner 8 cm half-width of the slab.

The outer 2 cm are expected to be in error because of anisotropy from leakage.

The slab calculation is run by varying the number of generations. The results for various generations

are given in Figure 4. The solid line is the adjoint function (equivalent to the flux for 1-group) computed

with Monte Carlo. The dots represent an approximate estimate of the adjoint function obtained from the

forward calculation by waiting some number of generations (L − 1 latent generations). For small L, the

adjoint-weighted flux shows poor agreement, but by around 20 generations, it appears the adjoint function

is converging to the correct result.

This calculation shows that, for localized quantities, very many generations will be needed to get accurate

importance weighting factors. This specific problem, which is 20 mean free paths thick (when both halves are

included), takes at least 20 generations for the asymptotic population to settle. Problems with a very high

dominance ratio may require even more. Fortunately, it will be seen by empirical example in the subsequent

section that global quantities, such as the kinetics parameters, need far fewer iterations to converge.

The next test looks at a multigroup problem. The model used is a reflected 1-D slab. The three group

data (χ is the fission emission spectrum and Σsg�g is the macroscopic scattering cross section for scatter from

energy group g� to g) are given in Table III. The inner (core) region of the slab has a 10 cm half-thickness,

and the slab (core and reflector) has a total half-thickness of 40 cm.

Results are calculated in both MCNP and Partisn. The discrete ordinates results are computed by

calculating angular forward and adjoint functions and manually integrating them to produce the scalar

adjoint-weighted flux. The curves are then normalized such that the total area under the curves summed

over the three energy groups is unity. The comparison is given in Figure 5, (the dashed lines represent the

discrete ordinates results, and the dots represent those from Monte Carlo) and agreement within statistical
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bounds is observed between the two methods.

3.2 Kinetics Parameters

The neutron generation time Λ is defined by

Λ =
�
ψ†, 1

v ψ
�

�ψ†,Fψ� . (17)

The integrations are taken over all phase space within the reactor. The neutron lifetime measures the

mean time for a neutron to produce one additional neutron and represents a time constant for a transient

in a nuclear reactor. Note that the neutron generation time is related to the neutron lifetime (or removal

time) tr by Λ = tr/k. Traditionally, these are computed by inserting a 1/v absorber uniformly throughout

the system[19] to measure the time-absorption or α-eigenvalue. In Monte Carlo, two calculations must be

performed: a reference case and another with the artificial absorber. Since this method is only correct

where the artificial insertion is small, such an approach is often hampered by the fact that the statistical

uncertainty of the difference is often larger than the difference itself. The adjoint-weighted approach does

not suffer from this because no subtraction of stochastic numbers is required.

To compute the generation time with this method, the numerator and denominator each need to be

tallied separately. The numerator, the adjoint-weighted neutron density, can be obtained by

C

�
ψ†,

1
v
ψ

�
=

1
N

�

p

Rp

�

τ∈p

1
v
�, (18)

where v is the neutron speed. The tally contribution Tp is the sum of individual contributions from all

tracks τ sharing progenitor index p. The individual contribution is almost exactly like a track-length flux

estimator except it is divided by neutron speed v to get a neutron density. This tally functions exactly like

an adjoint-weighted flux estimator.

The denominator is the adjoint-weighted fission source. Computing the non-adjoint weighted fission

source over a region in Monte Carlo power iteration simply involves counting up the source weight emitted

in that region and normalizing to the overall power. To find the adjoint-weighted fission source over a region

(in this case the entire reactor), each neutron score is the source weight times its importance. In many

respects, this is significantly easier than the adjoint-weighted flux tallies. All that is required is to weight

each source neutron (having weight w0 that is divided out producing unity) by the detector response or

asymptotic population:
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C

�
ψ†,

1
k
Fψ

�
=

1
N

�

p

Rp. (19)

There is an additional factor of 1/k within the tally. This comes from the normalization of the fission

source that occurs every generation; the neutron population is divided by the current estimate of k to keep

the population stable. To match the denominator in (17), some estimate of k needs to be applied to each

score. MCNP normalizes by the collision estimator of k every iteration[12]. For this implementation, the

most self-consistent way is to multiply by the geometric mean of all k estimates within the block of iterations

containing the original, latent, and asymptotic generations. There are many ways to do this and the “best”

approach probably depends on the specifics of how the power iteration normalization is performed.

The effective delayed neutron fraction, βeff can be found by

βeff =
�
ψ†,Bψ

�

�ψ†,Fψ� . (20)

B is the delayed emission source operator. The denominator is estimated much like with the total fission

source in equation (19) except for one small modification. The form of the tally is

C

�
ψ†,

1
k
Bψ

�
=

1
N

�

p

Rp(1− δi0). (21)

Here i is the index of the precursor, where i = 0 denotes a prompt neutron. Like with the adjoint-

weighted fission source tally, this tally contains a 1/k factor. The approach of multiplying each score by the

geometric mean of the corresponding collision estimates of k is used.

Rossi-α, a common parameter measured in criticality experiments, is defined by

α = −βeff

Λ
= −

�
ψ†,Bψ

�
�
ψ†, 1

v ψ
� . (22)

Like with Λ, this can often be estimated by inserting a uniform 1/v absorber and measuring the time-

absorption eigenvalues. Also, some Monte Carlo codes can perform an iterative α-eigenvalue search to help

find Rossi-α[20].

For verification, a two-group, infinite medium problem[21] is compared. MCNP is further modified to

accept multigroup delayed neutron data. The delayed neutron fractions are independent of incident energy

and have values of β1 = 1/4 and β2 = 1/8. The total delayed neutron fraction is therefore β = 3/8. The

rest of the nuclear data is given in Table IV. Speed is given in ns and macroscopic cross sections in cm−1 .

The removal cross section for group g is defined as ΣRg = Σtg −Σsgg. To simplify notation, ξg is defined as
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the sum, over precursor index i, of all χigβi.

The forward and adjoint functions are normalized such that ψ1 = 1 and ψ†
2 = 1. The ratios of the forward

and adjoint functions are

ψ2

ψ1
=

Σs12

ΣR2 − 1
k ξ2νΣf

, (23)

ψ†
1

ψ†
2

=
Σs12

ΣR1
. (24)

The solution for k is

k = [(1− β) + ξ1]
νΣfΣs12

ΣR1ΣR2
+

ξ2νΣf

ΣR2
= 1. (25)

Analytic solutions are obtained for Λ, βeff, and α:

Λ =
1
v1

Σs12
ΣR2

+ 1
v2

Σs12
ΣR2−ξ2νΣf�

Σs12
ΣR1

[(1− β) + ξ1] + ξ2

�
νΣf Σs12

ΣR2−ξ2νΣf

= 44/3 ns, (26)

βeff =
Σs12
ΣR1

ξ1 + ξ2

Σs12
ΣR1

[(1− β) + ξ1] + ξ2
= 1/2, (27)

α = −

�
Σs12
ΣR1

ξ1 + ξ2

�
νΣf Σs12

ΣR2−ξ2νΣf

1
v1

Σs12
ΣR2

+ 1
v2

Σs12
ΣR2−ξ2νΣf

= −3/88 ns−1. (28)

The results from MCNP are compared to the analytic solutions in Table V (C/R is the calculated to

reference or analytic solution) and show agreement within the 2-σ confidence band and well within a tenth

of a percent.

Eight 1-D, multigroup slab and sphere problems are described in Table VI where G denotes the number

of energy groups.. More detailed information, such as the system dimensions and the artificial cross section

data, can be found in [22]. Λ is computed with both MCNP and Partisn, and the results are compared.

The cross section data is fictitious and does not represent any particular physical problem; however, it

is consistently used by both the discrete ordinates and Monte Carlo calculations. The results of the test

problems are given in Table VII. The C/R denotes the calculated to reference (Partisn) solutions. The

comparisons appear to be within or near the 2-σ confidence interval and are all well within one percent of

the values predicted by discrete ordinates.

Also in Table VII is the importance impact factor I, which is the ratio of the importance weighted to the
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non-importance weighted values predicted by Partisn. In five of these problems, the impact of importance

weighting is greater then ten percent, meaning a non-importance weighted value will be incorrect by at least

that amount. Of particular note is problem 3, which is particularly pathological. In this case, not factoring

in the importance weighting leads to a prediction of Λ that is orders of magnitude too large. Even with such

extreme cases, these methods can predict the correct value within less than a tenth of a percent.

Like with the adjoint-weighted flux, it would be useful to get some measure of convergence for a global

parameter such as the neutron generation time. For this calculation, a detailed 2-D Pressurized Water

Reactor model[23] is used with ENDF/B-VII.0 nuclear data[24]. The neutron generation time is calculated

for various numbers of latent generations. These results are displayed in Figure 6.

It appears convergence in Λ is not observed until around twenty latent generations. Notice the statistical

noise increases dramatically as the number of latent generations increases. This is because the tallies score

less frequently, and the length of the runs must increase substantially with the increase in the number of

latent generations to have statistically meaningful results. However, the difference between the two latent

generation case and that of twenty is less than one percent. This suggests for a typical power reactor,

somewhere around ten to twenty generations is probably appropriate. Even with fewer, the discrepancy

is likely to be small and probably outside of the ability of instrumentation to detect. This supports the

assertion that global (or integrated) quantities are far less sensitive to getting an exact importance function

than a local quantity and would explain the fairly accurate effective delayed neutron results seen in [10] and

[11] for using a one-generation next fission probability as a detector response.

This also demonstrates that there is a tradeoff between accuracy (more generations means smaller trun-

cation error) and statistical precision. At a certain point, there are diminishing returns where the increase

in accuracy is more than offset by the increase in statistical noise in the tally result. The large uncertainty

bars (for the cases of more than 15 latent generations) observed in Figure 6 illustrate this. In other words,

the increased cost of losing such statistical precision at the benefit of marginally increasing accuracy is rarely

justified.

Continuous-energy MCNP calculations of Rossi-α (using ENDF/B-VII.0 nuclear data) are validated

against experimental measurements for seven OECD/NEA benchmarks[25]. Models from the MCNP criti-

cality validation suite[26] are used for the calculations. The comparisons are given in Table VIII.

The MCNP calculated values of Rossi-α agree with experimental measurements for benchmarks contain-

ing U-235/238 and Pu within two percent. The Rossi-α values for both the U-233 benchmarks do not agree

as well. Jezebel-233 and Flattop-233 are in error by about seven and eight percent respectively. While it

would be premature to draw too many conclusions from two calculations, the consistency in the errors of

both suggests that the discrepancies are likely caused by inaccuracies in the U-233 nuclear data.
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3.3 Perturbation Theory

A first-order estimate of the change in reactivity caused by a small perturbation can be estimated by[3]

∆ρ = −
�
ψ†,

�
∆Σt −∆S− 1

kF
�
ψ

�

�ψ†,F�ψ� . (29)

The reactivity ρ is defined in the usual manner,

ρ =
k − 1

k
. (30)

There are three terms on the right side of the inner product in the numerator. From left to right, when

operating on the flux, the terms correspond to the change in the total collision rate, the change in the

scattering source, and the normalized change in the fission source. The term in the denominator is the

perturbed fission sourceb. Each of these four terms will require a tally.

The term for the change in the collision rate is a fairly easy extension from the adjoint-weighted flux

estimator. It takes the following form

C
�
ψ†,∆Σtψ

�
=

1
N

�

p

Rp

�

τ∈p

∆Σt�. (31)

∆Σt is the change in the total cross section in the region of track τ . This term represents how much the

loss rate from collisions changes.

The other three terms involve finding the change in either the scattering or fission sources. Recall that to

tally a non-adjoint weighted fission source over a region, the source weight of every fission neutron emitted

in that region is tallied. Normally, the fission source weight is the same for every source neutron within an

iteration because of the renormalization. This does not have to be the case. In theory, it would be possible

to emit particles uniformly with different weights to reflect the local intensity of the fission source. Another

interpretation of particle weight involves thinking of each trajectory as consisting of numerous particles with

the weight reflecting the population.

A local increase in the fission cross section by ∆Σf would increase the number of fission neutrons produced

locally. In effect, the source weight could be increased relative to the unperturbed source weight. This would

be done in such a way to bias the source such that the same path could be followed as if it is unperturbed,

but contribute more to tallies and further multiplication.

This is very similar to a variance reduction technique called source biasing used in fixed source problems.
bMany derivations have fission source unperturbed in the denominator. This is a further approximation that makes this a

fully linear estimate.
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In effect, one source is being made to look like another. In that case, the motivation is to preserve the

physical source through numerical weighting, but simulate a different one to gain calculational efficiency.

Consider an isotropic point source where neutrons in the rightward direction are three times as important

as those in the leftward direction. The calculation is more efficient if three times as many neutron histories

are simulated in the rightward direction as the leftward one. The particle source weights must be modified

to preserve the expected tally scores. In this case, rightward neutrons have a source weight of two-thirds

while leftward neutrons have a source weight of two. In terms of weight, the source is still isotropic – equal

weight, on average, is carried by neutrons emitted in both directions.

With this application, the objective is to make the unperturbed, simulated source look like a perturbed

source. In reality, the source weight itself will not be perturbed at all, but this biasing factor will be used in

the tally contributions for the perturbed sources. For the fission source, the number of neutrons produced

at a collision is

η =
1
k

w
νΣf

Σt
. (32)

w/Σt is a collision estimate of the flux, which is not perturbed in first-order perturbation theory. The

bias factor (or new weight) for the perturbed fission source is the ratio of the number of neutrons produced

in the perturbed case to the number produced in the unperturbed case. For a first-order perturbation, the

new weight for the fission source would be

w�
0 = w0

(νΣf )�

νΣf
. (33)

This is the modified weight that can be inserted into the term for the perturbed fission source,

C

�
ψ†,

1
k
F�ψ

�
=

1
N

�

p

Rp
(νΣf )�

νΣf
. (34)

The change in the fission source is the expected change in source weight w�
0 − w0:

∆w0 = w0

�
(νΣf )�

νΣf
− 1

�
= w0

∆ (νΣf )
νΣf

. (35)

Therefore, the change in the fission source is

C

�
ψ†,

1
k

∆Fψ

�
=

1
N

�

p

Rp
∆ (νΣf )

νΣf
. (36)

Likewise, similar arguments can be made for the change in the scattering source,
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C
�
ψ†,∆Sψ

�
=

1
N

�

p

Rp

�

s∈p

∆ (Σs)
Σs

. (37)

The tally contribution is made every scattering event s with progenitor p within the history in the original

generation.

The new tallies can be combined as in equation (29) to find an estimate of the change in reactivity

∆ρ. There are a couple caveats here. The first is that nothing is done to account for changes in the

fission emission spectra or the scattering laws. Only the bulk change in νΣf and Σs at the incident energy of

collision is considered and not the relative change in the energy-angle transfer probabilities. The second is an

assumption with source biasing. To bias a source correctly, all regions of phase space that would be sampled

in the perturbed source need to be sampled in the simulated (unbiased) source. This is not necessarily always

the case, and this method will produce incorrect results in perturbation where, for example, fissile material

is added to a region that is nominally vacuum.

To validate the method, the Godiva benchmark[25], a bare high-enriched uranium sphere (approximately

93.8 weight percent uranium-235) is given two different perturbations. The first is changing density in the

outer 0.1 cm of the sphere. This problem is selected because the standard technique used for continuous-

energy perturbations in Monte Carlo, the differential operator method[27], cannot accurately predict the

change in reactivity without accounting for a perturbation in the fission source[28]. A reference discrete

ordinates solution (using MENDF6 nuclear data[29]) is published in [30]. The first-order perturbation Monte

Carlo results (using ENDF/B-VII.0 nuclear data) should closely match the first-order discrete ordinates

solution.

The results are displayed in Figure 7. The reference solution is an exact change in reactivity computed

from two direct Partisn calculations. The first-order Partisn reactivity changes are estimated with equation

(29). The first-order (adjoint-weighted) Monte Carlo and discrete ordinates match very well. Note that all

of the perturbations were performed in MCNP with one calculation using the exact same set of random

numbers. There is a consistent 1-σ difference between the two calculations, but the deviation is consistent

with the first-order discrete ordinates results.

In the next test, the Godiva sphere has its cross section library perturbed. The reference change in k is

estimated by two direct computations; one uses ENDF/B-VI.5 cross sections[31] and the other uses ENDF/B-

VII.0 cross sections. The first-order approximation is done by doing a material substitution perturbation by

replacing one set of nuclear cross sections with another. Note that the discrete ordinates method requires

a not insignificant amount of perturbed isotopes be present in the unperturbed material. As such, the

differential operator technique cannot perform cross section library perturbations. Results for ∆k for the
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reference and first-order solutions are given in Table IX and compare well. While outside the 2-σ confidence

band, the difference in k is 0.00014, which is small compared to the typical deficiencies in k from experimental

results. The discrepancy is likely the result of not accounting for the differences in the angular distributions

of inelastic scattering reactions.

Additional perturbations involving changes in enrichment, changes in moderator density, buildup of

xenon-135 in fuel, and control rod worth calculations are given in [15].

4 Summary & Future Work

A method is developed that weights tally scores by adjoint weighting factors. The score of an adjoint-weighted

tally is defined by the product, for each progenitor, of the contributions to a tally within a generation and

the detector response in some distant, future generation. A definition of the progenitor is given that is

consistent with the physical meaning of the adjoint; this accounts for branching in a neutron history as well

as the issues involving weight in the multiplication. An overview of the algorithms, which can be inserted

into a standard power iteration method, is given.

Values of adjoint functions and adjoint-weighted fluxes are verified against discrete ordinates or Monte

Carlo one-group solutions. The kinetics parameters Λ (neutron generation time) and Rossi-α are compared

with discrete ordinates calculations and experimental measurements respectively. The validation to discrete

ordinates comes out very well, and the validation tests against experimental measurements compare well

for most of the benchmarks. A couple perturbations are run comparing first-order Monte Carlo reactivity

changes to those estimated by first-order discrete ordinates and direct Monte Carlo. The edge density

variation and a cross section library perturbation compare well with reference solutions.

The question of how many generations need to pass between measuring the tally contributions and the

detector response requires quantification. A couple calculations are performed that produce some ad hoc

rules-of-thumb, but a more rigorous method of assessing convergence is needed.

Closely related to the perturbations is the analysis of sensitivity and uncertainty of cross section data[32].

This is of particular interest to criticality safety where uncertainty margins for computations need to be

calculated. Also, extending the routines to calculate fixed source adjoint-weighted fluxes may be possible as

well.

Finally, there are yet unresolved question of quantifying biases in results from source normalization in the

iteration scheme relate to adjoint-weighted tallies. While these questions are yet unresolved for standard,

spatially-dependent tallies and it is unlikely that much progress can be made on spatially-dependent, adjoint-

weighted tallies until this is resolved, there may be some useful results attainable for the adjoint-weighted
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integrated quantities such as the point kinetics parameters. Empirical observations show that biases are

negligible for batch sizes of several thousand or more, as expected for non-adjoint-weighted tallies.
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Table I: Adjoint-weighted scoring quantities for the example in Fig. 3.

p Tp Rp Sp

1 T1 R2 + R3 T1 (R2 + R3)
2 T1 + T2 + T3 R1 (T1 + T2 + T3) R1
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Table II: Adjoint-weighted tally types used within this paper.

Adjoint-Weighted: Equation T See section:
Flux

�
ψ†, ψ

�
� 3.1

Neutron Density
�
ψ†, 1

v ψ
�

1
v � 3.2

Fission Source
�
ψ†, 1

kFψ
�

1 3.2
Delayed Source

�
ψ†, 1

kBψ
�

(1− δi0) 3.2
Collision Rate Change

�
ψ†,∆Σtψ

�
∆Σt� 3.3

Scatter Source Change
�
ψ†,∆Sψ

� ∆(Σs)
Σs

3.3
Fission Source Change

�
ψ†, 1

k∆Fψ
� ∆(νΣf )

νΣf
3.3

Perturbed Fission Source
�
ψ†, 1

kF�ψ
� (νΣf )�

νΣf
3.3
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Table III: Artificial data for 1-D reflected slab problem.

g Σt ν̄Σf Σγ χ Σsg�1 Σs,g�2 Σs,g�3

Core
1 0.05 0 0 1 0.05 0 0
2 0.15 0 0.01 0 0 0.14 0
3 0.15 0.0238 0 0 0 0 0.14

Refl
1 0.2 0 0 - 0.15 0.05 0
2 0.2 0 0 - 0 0.05 0.15
3 0.2 0 0 - 0 0 0.199
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Table IV: Cross section data for analytic test problem of the kinetics parameters.
g vg Σt Σγ ΣR νΣf χp χ1 χ2 ξ Σsg1 Σsg2

1 10 2 1 3/2 0 1 3/4 1/2 1/4 1/2 1/2
2 5 3 1 2 5/24 0 1/4 1/2 1/8 0 1
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Table V: Comparisons of kinetics parameter results from MCNP with analytic solutions.
Analytic MCNP C/R

Λ (ns) 14.66667 14.66548± 0.00110 0.99992
βeff 0.50000 0.50003± 0.00005 1.00006
α (ns−1) -3.40909 x 10−2 -3.40955 ± 0.00044 x 10−2 1.00013
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Table VI: Test problem descriptions used in verifying Λ.
Problem G Description

1 4 Bare fast slab
2 4 Metallic slab with a moderating reflector
3 2 Metallic slab, strong thermal absorber, and moderating reflector
4 8 Bare intermediate spectrum slab
5 4 Bare fast sphere
6 4 Reflected fast sphere
7 4 Subcritical bare fast slab (k = 0.78)
8 4 Supercritical bare fast slab (k = 1.14)
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Table VII: Partisn/MCNP Λ comparisons for multigroup test problems.
Problem Partisn MCNP C/R I

1 9.79325 ns 9.79675 ± 0.00188 ns 1.00036 0.99021
2 135.19020 us 135.22164 ± 0.03384 s 1.00023 1.14537
3 49.16822 ns 49.20663 ± 0.01863 ns 1.00078 0.00488
4 112.05232 us 112.29905 ± 0.13692 s 1.00220 1.11580
5 1.72115 ns 1.72121 ± 0.00032 ns 1.00003 0.86498
6 10.18997 ns 10.18794 ± 0.00233 ns 0.99980 0.56477
7 10.17161 ns 10.17110 ± 0.00230 ns 0.99995 1.05365
8 9.67254 ns 9.67168 ± 0.00166 ns 0.99990 0.96534
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Table VIII: Comparisons of Monte Carlo (MCNP) calculations and experimental measurements of Rossi-α
(in ms−1).

Experiment MCNP C/R
Godiva -1100 ± 20 -1139.57 ± 2.35 1.017

Jezebel-239 -640 ± 10 -640.238 ± 2.374 1.000
BIG TEN -117 ± 1 -115.518 ± 0.219 0.987
Jezebel-233 -1000 ± 10 -1071.18 ± 3.50 1.071
Flattop-233 -271 ± 3 -292.401 ± 0.808 1.079

Stacy-29 -0.122 ± 0.004 -0.122155 ± 0.00296 1.001
WINCO Slab Tank -1.1093 ± 0.0003 -1.11723 ± 0.00311 1.007
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Table IX: Cross section library perturbation (ENDF/B-VI.5 to ENDF/B-VII.0) for Godiva.
k (ENDF/B-VI.5) 0.99646 +/- 0.00004

Reference ∆k 0.00344 +/- 0.00006
First-Order ∆k 0.00358 +/- 0.00006
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Figure 1: Example of a neutron history. The sets Ξ for the random walks are specified.
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Figure 2: Example of a neutron history. The four progenitor sets Π for this history are specified.
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Figure 3: Example of a random walk of a single history in the original generation and subsequent generations
within a block.
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Figure 4: Number of latent generations it takes the adjoint function to converge to its fundamental shape
for a mono-energetic, 1-D bare slab reactor.
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Figure 5: Adjoint-weighted fluxes calculated by discrete ordinates (Partisn) and Monte Carlo (MCNP).
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Figure 6: Calculated values of neutron generation time for varied numbers of latent generations in the 2-D
PWR problem.
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Figure 7: Calculated change in reactivity ∆ρ for density perturbations to the outer 0.1 cm of Godiva.
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