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INTRODUCTION

With the development of faster computers and global
variance reduction techniques [1], the Monte Carlo method
is being used increasingly often for calculating radiation
fields with fine resolution. An important question is being
able to quantify the efficiency of a calculation toward esti-
mating a collection of a large number of tallies (e.g., a mesh
tally in MCNP [2]).

Considerations on the development of different met-
rics are explained and three FOMs are defined. Three test
problems, one being a simplified splitting model, and the
other two involving global variance reduction techniques,
generated with an iterative Monte Carlo technique and a
deterministic method, are evaluated using these metrics.

EFFICIENCY METRICS

Assessing the efficiency of a calculation for a large
number of tallies can be done in several ways. A com-
mon approach [3] is to measure the fraction of elements
with a relative uncertainty less than some prescribed value,
usually ten percent, at a fixed wall-clock time. While this
particular metric is useful, it does suffer from a drawback
in that the time selected must not be too small such that
stochastic noise dominates and may not be too large such
that all, or almost all, the elements are less than the particu-
lar criteria. This motivates the development of a metric that
is time independent for a large number of histories.

For individual tallies, the FOM is typically defined as

FOM =
1

R2T
, (1)

whereR is the tally relative uncertainty andT is the
computation time.

Extending this to a tally collection is not simple be-
causeR for the collection is not well defined. Rather, some
representative value must be chosen, and there are a vir-
tually unlimited ways to select such a value. This repre-
sentative value, however, must be selected to preserve the
property of the FOM being asymptotically constant so as
to provide a time-indpendent basis for comparing variance
reduction parameters.

Figures of Merit for a Tally Collection

There are many valid possibilities for an FOM and
much depends upon the assumptions about what a prac-
titioner desires. The assumption here is the user desires as
many elements having a relative uncertaintyR ≤ H for the
lowest timeT possible.

Define a density function of relative variancesR2 of
the tally collection. The mean of this density functionv̄
represents some average relative uncertainty of the collec-
tion and is a simple-minded representation ofR2 of the
system. It is therefore possible to define a FOM, for conve-
nience called the Type-I FOM,

FOM1 =
1

v̄T
. (2)

v̄ scales as1/N (N is the number of histories) as a
consequence of the central limit theorem.

This so-called Type-I FOM is simplistic and intuitive;
however, it accounts only for the central tendency of the
relative-variance density. Because the tail is always ob-
served to be positively skewed and usually leptokurtic for
largeN , it is therefore more of a concern given the assump-
tion of desirability. Therefore, it may be instructive to ap-
ply a penalty for having a significant fraction of elements
greater than the mean and use a larger value as the repre-
sentation ofR2. There are numerous ways to account for
this, but particularly useful are quantities related to higher
moments of the relative-variance density: the standard de-
viationσv measuring the dispersion of the density, and the
kurtosisκv measuring the shape of the tail relative to the
peak.

A simplistic approach is to take the representative
value ofR2 being one standard deviation greater than the
meanv̄. This is called the Type-II FOM and has the fol-
lowing form:

FOM2 =
1

(v̄ + σv) T
. (3)

The quantityσv scales as1/N so that this satisfies the
criteria of being asymptotically constant. This is attractive
in that if a set of variance reduction parameters achieves
all elements with the same relative uncertainty (ideal be-
cause no histories are “wasted” sampling regions already



Fig. 1. Relative variance densities for various split param-
eters.

well converged given a fixed-time requirement to do so),
then the Type-I and Type-II FOMs are identical.

The choice of one standard deviation is completely ar-
bitrary. The number of standard deviations taken should
be a function of the shape of the relative-variance density.
This can be measured via its kurtosis, which is constant for
largeN .

A distribution can have the same mean and standard
deviation, but have a tail that is either fat and concentrated
near the peak (low kurtosis) or a thin tail with a small num-
ber of elements having a large relative uncertainty (high
kurtosis). For example, suppose the mean and standard
deviation of two different variance reduction schemes are
identical at timeT , but the maximum uncertainty for the
first is aH (a > 1) while the maximum uncertainty of the
other (despite being for a smaller fraction) is2aH. As-
sumingN is already large, the total time required to get
all elements withR ≤ H is a2T and4a2T respectively.
Therefore, the latter has significantly more “wasted” histo-
ries than its counterpart.

A possible form that takes this into account, the Type-
III FOM, is

FOM3 =
1[

v̄ + (κv/3)1/4
σv

]
T

. (4)

The semi-empirical factor(κv/3)1/4 denotes the num-
ber of standard deviations to take the penalty. The division
by three is to make the penalty for a normal distribution be
one standard deviation such that the Type-III and Type-II
FOMs are identical under this condition. If the distribu-
tion becomes less kurtic than a normal distribution, there
is a “reward” present over the Type-II FOM. The expo-
nent of 1/4 is present because the kurtosis is a function of
scores to the fourth power and this scales the magnitude to

Fig. 2. The three FOMs for the simplified splitting model.

be on the order of one, although this factor has been ob-
served to be above ten for highly kurtic distributions. One
drawback is that this representative value ofR2 can take on
non-realizable values for relative variance (R2 > 1) distri-
butions that are far from normal; however, this usually only
occurs when the distribution has been poorly sampled.

An issue inherent is the treatment of elements that
are not sampled. In this case, nothing can be said about
them and their relative uncertainties are undefined; there-
fore, they are not included in the relative-variance density
moment calculation. This subject is not addressed here.

TEST PROBLEMS

Simplified Non-Transport Splitting Model

Simplified Monte Carlo models without transport
physics are often useful to test metrics. The model used
contains 100,000 elements. Each history, every element
is sampled with a probability that is distributed uniformly
(chosen prior to simulation) between 0.01 and 0.10. If the
element is sampled, a corresponding tally accumulator is
appended with an exponentially distributed variable with a
unit parameter.

A common technique for improving the efficiency of
a calculation is splitting. In a transport sense, this involves
taking a particle and splitting it intoS (the split parameter)
copies, simulating each copy individually, and modifying
each score by1/S to preserve the expected value of the
tally. In this simplified model, all elements withp ≤ 0.05
will haveS chances of scoring each history to simulate the
splitting seen in transport. Doing so gives low probability
elements a higher chance of success, reducing the variance
in the score; however, each additional simulation takes ad-
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Fig. 3. (a) Photon flux distribution of the neutron on ground problem. (b) Neutron flux distribution of a criticality accident.

ditional time, potentially decreasing the overall efficiency.

Fig. 1 displays the relative-variance density function
for different splitting parameters: The dot with error bars
on each curve denote the mean and standard deviation of
the distribution. Increasing the splitting parameter reduces
the mean of the distribution, the standard deviation, and
appears to shorten the tail. This gives evidence that higher
moments are useful in determining a “quality”. The three
types of FOMs as a function ofS are shown in Fig. 2. As
expected, all experience some gain in efficiency until some
point where the increase in computational time overtakes
the diminishing gains from additional splitting. The Type-I
FOM suggests an optimal split parameterS = 2, whereas
the others suggestS = 4 or 5. Analyzing Fig. 1, the dis-
persion and tail are significantly smaller from theS = 2
andS = 4 cases.

Transport Problems with Global Weight-Window Maps

Two radiation transport problems are employed to test
the efficiency metrics. For illustration, flux plots of the two
problems are given in Fig. 3. Global weight-window maps
are generated with an iterative linear-tally-combination
with the MCNP weight-window generator (LTC-WWG)
in a patched MCNP version [4] and with a deterministic
method employed by ADVANTG [5].

The first has a neutron source on ground with a 5 cm
radius sphere of uranium-238 buried 80 cm directly below
the source. To complicate the geometry, a cylindrical pipe
of radius 10 cm is located in the ground. The problem is a
coupled neutron-photon problem (global mesh tally is uni-

form 100 x 100 x 100), where the weight windows (map is
40 x 40 x 40) are optimized to both fields.

The second problem simulates a criticality accident
with the neutron flux being desired throughout the entire
facility. A point source of neutrons is located in an ex-
periment room. A labyrinth hallway (walls are concrete)
connects the experiment room and the control room. The
neutron flux is desired throughout the entire facility; the
tally map is 1200 x 500 x 1, spanning the problem neglect-
ing the floor and ceiling, and the weight-window map is 10
x 10 x 10, including the entire problem.

The FOMs of the photon mesh tally of the sphere de-
tection problem are displayed in Fig. 4a, and the FOMs
of the neutron flux tally for the criticality accident prob-
lem are displayed in Fig. 4b. General observation is, as
desired, a global weight-window map (whether generated
iteratively via Monte Carlo or via a deterministic method)
improves the efficiency of the calculations as defined by the
new FOMs. This is confirmed by the traditional approach
of evaluating the fraction of elements with a relative un-
certainty less than some threshold as a function of time.
The advantage of the FOMs, however, is that they provide
a time-independent basis (for largeN ) for comparing the
efficiency of different variance reduction parameters.

One drawback is that importance maps contain numer-
ous degrees of freedom, i.e., each mesh element, and there
may be temporary decreases in the FOMs as parameters
are adjusted iteratively despite getting closer to an optimal
value – a challenge for automated approaches. The frac-
tion of elements with scores or less than a certain thresh-
old seems less sensitive to this, and therefore is still use-



(a) (b)

Fig. 4. FOMs for LTC-WWG iterations and ADVANTG for (a) the photon field from a neutron source, and (b) neutron field
from a criticality accident.

ful in trying to evaluate which set of parameters is better.
The higher moments give more information, and additional
gains beyond the Type-I FOM can often be observed as
the penalty for dispersion and kurtosis decreases. Unfor-
tunately, because there even more degrees of freedom with
the higher moments, these are even more prone to decreases
in the FOM while iterating and more susceptible to noise.

CONCLUSIONS

Three versions of FOMs for collections containing a
large number of tallies are defined based upon moments
of the relative-variance density function. These parameters
are time independent for largeN , which is an attractive fea-
ture for an efficiency metric. Unfortunately, any metric in-
volves some arbitrariness and inherently has shortcomings
of not being able to anticipate the exact needs of every user.
Despite this, some metric is better than none, and offers in-
sight into the issue of optimizing variance reduction param-
eters. These metrics could be used to assess the efficiency
of differing weight-window mesh resolutions as well as the
employment of different variance reduction techniques in
conjunction with global weight-window maps.
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