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ABSTRACT 
 

MCNP6 has been extended to include a new capability that permits tracking of 

neutrons and photons on an unstructured mesh embedded as a mesh universe 

within its constructive solid geometry capability.  Our mesh geometry was created 

through Abaqus/CAE using its solid modeling capabilities.  Monte Carlo transport 

results are calculated for mesh elements using a path length estimator while 

particles track from element face to element face on the mesh.  This paper 

presents some performance comparisons for the initialization and calculation 

phases of two well-known benchmark problems using both the legacy and 

unstructured mesh tracking capabilities.  For detailed geometries, unstructured 

mesh initialization is always faster.  For very detailed geometries where the 

models are comparable, the unstructured mesh capability is faster than the legacy 

geometry capability. 
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1. INTRODUCTION 
 
Los Alamos National Laboratory’s (LANL) Monte Carlo N-Particle (MCNP) transport code has 

a more general geometry capability than has been available in most combinatorial geometry 

codes [1].  In addition to the capability of combining several predefined geometrical bodies, as in 

a combinatorial geometry scheme, MCNP6 gives the user the added flexibility of defining 

geometrical regions from all the first and second degree surfaces of analytical geometry plus 

elliptical tori and then combining them with Boolean operators.  This decades-old constructive 

solid geometry (CSG) capability has been well-tested and verified.  However, it has long been 

recognized that as the model complexity increases, the process of describing the geometry is 

difficult, tedious, time-consuming, and error-prone [2,3,4].   

 

To address the difficulty of building complex geometry models, we (LANL) have developed a 

capability that uses an unstructured mesh (UM) representation of a geometry so that particles 

track directly on that mesh once it is imported into MCNP6 [5-7].  This approach was chosen not 

only to aid with the complex geometry modeling issue, but also to permit an easier interface for 

multi-physics calculations where these physics codes use an unstructured mesh.  Other 

approaches [2,3,4,8] based on a computer-aided design (CAD) system to create a geometry 

model exist and address the issue of building complex geometry models for MCNP calculations, 

but do not readily support easy interfacing for mesh-based, multi-physics calculations or 

necessarily support state of the art results visualization.  CAD-based tracking [8] has proven to 

be slower than tracking on CSG. 
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A Notable Comparison of Computational Geometries in MCNP6 
 

Computer aided engineering (CAE) tools such as Abaqus/CAE [9] and CUBIT [10] have the 

ability to generate an unstructured mesh representation of their solid models and are capable of 

generating mesh geometries for use in MCNP6.  The degree of fidelity between the CAE 

representation of the geometry and the unstructured mesh is generally good and depends to a 

degree upon the user’s willingness, ability, and need to refine the model. 

 

Previous work [5-7] described the UM capability and how it was implemented in a hybrid 

geometry approach in MCNP6.  The Reference [5] work also presented results using three, 

geometrically simple benchmark problems and showed that the new UM capability works quite 

well and yields accurate results for both nuclear criticality calculations and fixed source 

calculations using the supported finite element types.  Since these benchmark problems were 

relatively simple, geometrically, and have traditionally been modeled with a minimum number of 

cells and surfaces, the Reference [5] work was not able to compare code performance with 

consistent geometrical representations; this current work does make that comparison for two of 

the problems presented in the previous work.   

 

In addition to the previous work [5] with the simple benchmark problems, work with more 

detailed models at LANL showed some interesting performance results. When CSG and UM 

models of the same, complex system were run on our high performance computing systems, we 

observed near identical runtimes even though there was a large difference in the cell and element 

counts.  The CSG model had 2809 cells and the UM model had 170839 first order elements.  

Other than the geometry and the methods for obtaining results, the input specifications for the 

two calculations were the same.  If the CSG model had the same number of cells as the UM 
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model had elements (i.e., 170839), its runtime would have been much longer.  An examination of 

the findings below should convince the reader of this statement. 

 

Therefore, because of the performance results seen between models that were similar but not 

equivalent, we decided to undertake as fair a comparison as possible between the two geometry 

capabilities using the above mentioned benchmarks.  Understanding performance with these 

simpler models should provide insight into using this method with problems requiring more 

complex geometries. 

 
2. BACKGROUND 

 
It should be fairly obvious that with two different geometry systems in MCNP6, the algorithms 

for problem setup and particle tracking are different.  It is this difference that will be important in 

understanding code performance when different tracking methods are used.  A couple important 

examples are discussed here to illustrate the differences.  Before discussing performance results 

from these examples, we will discuss some crucial differences between these two geometry 

features. 

 

During problem setup for the CSG geometry, each cell is checked and simplified, if possible, 

removing any redundant surfaces.  Some of the operations in this process are n-squared where n 

is the number of CSG cells in the entire problem.  There is no direct counterpart for this with the 

UM.  Instead, each element’s nearest neighbors must be found.  This nearest neighbor search is 

currently done during particle tracking when the first particle enters an element.  This could be 

done during mesh setup, but was initially judged to be more efficient if implemented for only 

those elements actively seen by the transported particles. 

 
LA-UR-12-24621 4/27 

 



A Notable Comparison of Computational Geometries in MCNP6 
 

 

The nearest neighbor search is not an n-squared operation where n is the number of mesh 

elements in the entire problem, but rather an n-squared operation over the elements in its 

associated part.  In our mesh treatment, nearest neighbors are only meaningful for elements in a 

part; one can think of the part as the smallest building block in the CAE solid model.  The 

nearest neighbor search is conducted only for the elements in a part and once all of the element’s 

neighbors are found, the search is terminated. 

 

Given a particle’s phase space description, the traditional particle tracking methodology in 

MCNP6 requires that the program select a minimum distance to travel from a distance to a 

boundary, a collision, a time cutoff, a variance reduction event, etc.  If the distance selected is 

because of a cell boundary in CSG, the particle is advanced to the surface of that cell and the 

various distances are re-sampled.  However, with the UM there are two types of boundaries: 

element boundaries and part boundaries.  In the initial UM implementation, the boundary of 

interest was the part boundary; hence, many element boundaries could be crossed before a part 

boundary was encountered.  We refer to this type of tracking as multi-tracking.  This approach is 

acceptable as long as the material composition of each part is homogeneous.  In the process of 

this investigation and to make as fair a comparison as possible between CSG and UM for this 

work, we have added the ability to turn the multi-tracking off.  When this is done, one mesh 

element and one CSG cell are treated as identical in terms of cycling through the history 

transport loop.  However, testing with multi-tracking off yielded little difference in results 

compared to running with multi-tracking on.  For the rest of this paper, all UM calculations use 

multi-tracking on. 
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With the MCNP CSG capability, it is possible to model polyhedrons bounded by planes with an 

arbitrary orientation.  Since finite elements of the first order tetrahedral type are guaranteed to 

have planar faces, it is possible to reproduce these finite elements in MCNP with cells defined by 

arbitrary planes [1].  That is what we chose to do for our comparisons in this work.  From the 

same Abaqus input file used in our MCNP6 calculations with the UM, we were able to create an 

equivalent representation of the first order tetrahedra using arbitrary polyhedral cells (APC) with 

the CSG capability.  In order to make it convenient to describe what is known as “the outside 

world” in MCNP (i.e., the phase-space outside of the geometry of interest), each benchmark 

geometry was placed in a box of air so that one macrobody surface represented the boundary 

between the geometry of interest and the outside world.  All of the geometry inside this 

macrobody was described either with a mesh of finite elements or APC’s.  These boxes were not 

fitted tightly around the spheres since space was needed to generate well-formed elements 

adjacent to the outer spherical surfaces.  In the course of this work, the number of finite elements 

and APC’s were varied in order to look at code performance as a function of elements and cells. 

 
3. THE BENCHMARK MODELS 

 
We chose to revisit the simple Godiva criticality sphere benchmark [11] and Osaka nickel sphere 

benchmark experiment [12] problems in order to test tracking during a criticality and fixed 

source calculation, respectively.  With both geometries possessing a highly curved outer surface, 

a large number of first order tetrahedra are required to accurately reproduce the volumes and 

obtain accurate results [5,6].  More details about the agreement of results between CSG and UM 

models can be found in the references [5,6], but is generally good, depending upon the type and 

number of elements/cells. 
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The Godiva benchmark is a simple, highly enriched uranium sphere of radius 8.7407 cm and 

density 18.74 g/cm3.  Traditionally, neutrons are tracked in batches using a power iteration 

method to calculate k-effective for this fissile system. 

 

The Osaka benchmark is a simple nickel shell, density 8.85 g/cm3, with inner radius 2.5 cm and 

outer radius 16 cm.  Pulsed neutrons were generated at the center of the inner air cavity by the 

t(d,n)4He reaction using a 245-keV deuteron beam.  Neutron leakage is calculated at or beyond 

the outer nickel surface. 

 

Since our previous experience with the code showed us that increased computational times 

would be needed as the level of detail in the models increased, the requested history conditions 

for both problems were altered from the Reference [5] work.  These conditions will be discussed 

in more detail in the following calculation performance section. 

 

All of the computer runs were performed with the sequential version of the code, optimized to 

level 1 with version 11.1.072 of the Intel Fortran compiler on a Linux cluster with dual Intel 

Xeon ES-2670 chips clocked at 2.6 GHz and possessing 2 GB RAM per core.  The operating 

system was 64-bit Chaos.  ENDF/B-VII cross sections were used for all nuclides.   
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4. INITIALIZATION PERFORMANCE 

 

The problem setup time as a function of element or cell count is shown in Figure 1.  Setup time 

is determined by subtracting the calculation time from the total runtime as determine by MCNP 

and displayed in its output file.  This time is independent of the various conditions (number of 

histories) under which the models were subsequently run as described later in this paper. 

 

 
Figure 1.  Problem setup time on one processor as a function of geometry detail for the 

Godiva and Osaka benchmark problems. 
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For large numbers of elements the UM models initialize ~40 times faster than the equivalent 

CSG models.  This is primarily because the CSG setup must simplify and check the cell 

descriptions by removing redundant surfaces.  This is an n-squared search operation where “n” is 

the number of surfaces in the entire problem; this is done for each cell.  This operation is not 

needed in the UM initialization for the mesh elements.  Most of the initialization time for the UM 

models is devoted to finding the element faces that are on the part surfaces.  This is an n-squared 

operation where “n” is the number of elements in the part. 

 

There is a slight difference in the setup time between the two different UM models for large 

element counts that does not appear in the corresponding CSG models.  This effect is because of 

the different arrangement of mesh elements in the two models.  In the Godiva model there is one 

constraining spherical surface that separates the uranium region from the air region.  In the 

Osaka model there are three constraining spherical surfaces: one between the nickel region and 

the outside air region, one between the nickel region and the inner air cavity, and one that 

subdivides the nickel region into two shells.  The meshing algorithms in Abaqus/CAE must place 

nodes on these surfaces in the process of meshing each region.  Sometimes during this meshing 

process, elemental arrangement is more advantageous in some models for certain operations.  

This will be apparent in some of the tracking comparisons made later in this paper. 

 

Figure 1 shows the results where one processor is used in the problem initialization phase.  Input 

for CSG geometries can only be processed sequentially.  Input for UM geometries can be 

processed in parallel with the message passing interface (MPI) version of the code, provided the 

geometry consists of multiple parts so that each part may be processed on its own slave node.  If 
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the models considered here were constructed from multiple parts, the wall clock time for 

problem setup would be reduced proportional to the number of parts and the UM curves in 

Figure 1 would appear lower in the plot and their slopes would not be as steep.  If this was to 

occur, the label “Setup Time” should be more appropriately replaced with “Wall Clock Setup 

Time”.  The obvious consequence of this is that with the UM there is less idle processor time in 

an MPI run while the slave nodes wait for the problem initialization phase to complete. 

 
5. CALCULATION PERFORMANCE 

 

The calculation times as a function of elements or cells for the Godiva and Osaka benchmarks 

are shown in Figures 2 and 3, respectively.  The calculation time is that determined by MCNP 

and presented in its output file.  The Godiva kcode calculation was run with 5000 histories per 

cycle for 120 total cycles while only tracking neutrons.  The Osaka fixed source neutron 

calculation was run for 100,000 histories. 

 

Both Figures 2 and 3 show that for large element counts, the calculations with the UM models 

take less time than the corresponding CSG model.  For small element counts, the calculations 

with the CSG models are faster.  Somewhere between 10,000 and 100,000 elements the 

performance curves cross, but the crossing is different in the two figures.  If photons are tracked 

along with the neutrons in the Godiva kcode calculation, the resulting set of performance curves 

would be shifted higher than the curves in Figure 2 in such a way that their intersection point is 

to the left of the intersection point in Figure 2 by ~ 20,000 elements. 
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Obtaining an understanding of the code’s tracking performance from these two benchmark 

problems is difficult since they are different types of problems; that is, they use different physics.  

However, except for number and orientation of elements/cells, the underlying geometries are 

similar.  By using MCNP’s void card option to replace all problem materials with void and by 

using an isotropic, fixed point source at the same location relative to the origin in each, both 

problems can be reduced to one of ray-tracing the geometry from the center outward.  This action 

essentially minimizes any time spent by the code in physics routines and the calculation time is 

now mostly attributed to tracking through the geometry.  This approach will give us a better 

comparison between the two tracking methods. 

 

Figures 4 and 5 provide the performance curves for the voided geometries described above with 

100,000 and 1 million histories, respectively.  As expected, the CSG performance curves for the 

two models are almost identical.  The UM performance curves agree, but not quite as well as 

those for the CSG models, primarily because of the different constraining surfaces used when 

generating the mesh.  Therefore, going forward with this paper, studying one model, the Godiva 

model, under different conditions should be sufficient to understand the performance issues. 

 

A comparison of the curves between Figures 4 and 5 reveals that as the number of histories 

increases, the intersection point of the two lines moves from left to right in the plots.  That is, as 

more particles are tracked the UM calculations remain less efficient than the corresponding CSG 

calculations, except for perhaps very detailed geometries.  Running more histories with the CSG 

allows the code to take advantage of its previously created “other side cell” list so that 
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calculation efficiency increases as it continues to run.  More discussion on the “other side cell” 

lists follows. 

 

A comparison of the end points (left and right) for the Godiva curves in Figures 4 and 5 is rather 

revealing.  Between these two figures, the times for the calculations that mark the left hand ends 

are about a factor of 10 different and are consistent with the number of histories that are run.  

This is not the case for the points that mark the right hand ends of the Godiva curves.  Here, there 

is roughly a 20% increase in calculation time as the number of histories is increased by a factor 

of 10.  When the two different CSG calculations are studied with a code profiler, the times in the 

routines that take the most time scale by roughly the factor of 10, except for the routine that 

selects the next cell into which the particle tracks.  Here we see an increase that is in line with the 

increase that we see when results from Figures 4 and 5 are compared.  This contrast in the 

differences between the scaling on the left side of the figures versus the right side is attributed to 

how quickly the “other side cell lists” are built.  This is discussed below.  A similar discussion 

exists for the UM calculations when they are studied with a code profiler; the tracking routines 

scale by a factor of 10 and the nearest neighbor search routines are the largest single time sinks 

and are approximately the same between the two calculations. 

 

An alternative way to show the performance of the UM models relative to the CSG models is to 

divide the UM calculation time by the corresponding CSG calculation time, holding the number 

of histories constant, to generate calculational ratios as a function of element or cell count.  If the 

ratio is greater than 1, the CSG calculation is more efficient and the reverse is true if the ratio is 

less than 1.  Figure 6 shows these ratios for the Godiva benchmark mesh when the ratios are 
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calculated after certain numbers of histories have been accumulated.  In this figure, those points 

with values less than 1 correspond to situations where the UM calculations are faster or more 

efficient than the corresponding CSG ones.  It appears from the asymptotic nature of three of the 

curves in Figure 6 and the behavior of the fourth one (10 million history run), a point will be 

reached with the increasing geometric detail that the UM tracking will always be faster or more 

efficient than the CSG tracking unless an infinite number of histories is run. 

 

In both of the tracking methodologies, the code must determine the closest intersection point in 

the current element/cell for the direction that the particle is moving.  Then, if the particle leaves 

the element/cell, it must determine the element/cell on the other side of the surface containing the 

intersection point.  Since the elements and cells in these models are tetrahedra, the different 

intersection routines are similar in computational complexity.  What is different between these 

methods is how the code determines what is on the other side of the surface containing the 

intersection point.  With the CSG capability, the code must do an n-squared search over all cells 

to find the appropriate one on the other side.  Once it has found the new cell, the code adds it to 

the “other side cell list” for the old cell.  When a new particle enters the old cell (or the same 

particle reenters), the code will first check the “other side cell list” before attempting the n-

squared search over all of the cells.  Upon problem startup these lists are empty and MCNP must 

work to populate them.  As the lists grow, MCNP tracks more efficiently when using the CSG 

capability. 

 

When a particle is leaving an element in the unstructured mesh, no n-squared search over 

elements is needed.  Rather, the code checks the element’s nearest neighbor list, where in this 
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case there is at most one element on each face of the tetrahedra (there are no nearest neighbors 

for surface element faces).  If the nearest neighbor list does not exist, the code can quickly build 

it.  However, MCNP currently does not select intelligently from this list; this will be corrected at 

a later date for a future version of the code provided any additional memory requirements for 

implementation are not prohibitive. 

 

The points farthest to the left on the curves in Figure 6 correspond to models with 1375 elements 

or cells.  With the large number of histories that have been run to generate these curves, it is 

fairly safe to assume that the “other side cell lists” have been created quickly and the ratios we 

see for these points are a good indication of the maximum speed or efficiency differences 

between these tracking methods.  Therefore, based upon these void model calculations, the 

greatest difference between the UM and CSG tracking methods is a factor of 6.0 to 6.8, meaning 

that the UM method is slower. 

 

When more meaningful, non-void problems are run using the mesh, such as the original kcode 

calculation or a fixed source calculation with a 6.1 MeV gamma point source placed at the 

model’s center, the tracking routines compete for time with the other physics routines and the 

calculation ratios change.  Examples are shown in Figures 7 and 8.  Consider the cases with the 

coarsest mesh – 1375 elements or cells – when viewed with a code profiler.  The most dominant 

routines for the CSG kcode calculation are the ones for tallying results and finding the neutron 

cross sections.  Since there are many banked particles in the photon calculation because of 

bremsstrahlung, annihilation, and fluorescence the routine that returns particles from the bank 

dominates this calculation.  The most dominant routines for both of the UM calculations are the 
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ones associated with UM tracking.  Therefore, different weighting of the various routines 

influence the overall calculation ratios, as defined in this work, so that for problems with 

materials the speed difference between the UM capability and the CSG capability is not nearly as 

pronounced for coarse mesh problems as first indicated by the void problems.  As the geometric 

detail increases by way of more elements/cells, the UM capability surpasses the CSG capability 

sooner in terms of efficiency. 

 

Overall, a comparison of the curves in Figures 7 and 8 shows that they quickly drop off as a 

function of elements/cells when fewer histories are run.  This is as expected for reasons 

regarding the “other side cell lists” explained above.  The overall slope of the fixed source 

gamma case curves is not that different between Figures 7 and 8.  This is because there is a 

considerable number of secondary particles produced that help build the “other side cell lists” 

sooner than what is exhibited for the other cases in these figures. 
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Figure 2.  Calculation time on one processor as a function of geometry detail for the Godiva  

benchmark problem.  120 total cycles with 5000 histories per cycle. 
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Figure 3.  Calculation time on one processor as a function of geometry detail for the Osaka  

benchmark problem.  100,000 total histories. 
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Figure 4.  Calculation time on one processor as a function of geometry detail for  

the benchmark problem with voided material and an isotropic point source. 
100,000 total histories. 
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Figure 5.  Calculation time on one processor as a function of geometry detail for  

the benchmark problem with voided material and an isotropic point source. 
1 million total histories. 
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Figure 6.  Ratios of calculation time (UM / CSG) on one processor as a function of 

geometric detail using the voided Godiva benchmark geometry. 
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Figure 7.  Ratios of calculation time (UM / CSG) on one processor as a function of 

geometric detail and problem type using the Godiva benchmark geometry. 
100,000 histories for each calculation. 
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Figure 8.  Ratios of calculation time (UM / CSG) on one processor as a function of 

geometric detail and problem type using the Godiva benchmark geometry. 
10 million histories for each calculation. 

 
 

6. CONCLUSIONS 
 

A fair comparison of MCNP6’s two geometry capabilities has been presented by analyzing code 

performance on two well-known benchmark problems, each with varying numbers of histories, 

geometry refinement, and problem type.  Results from the problems analyzed here show that 

shorter problem initialization times occur when the unstructured mesh feature is used.  This 

behavior is dependent primarily on the number of elements (either finite elements or traditional 

MCNP cells) in the geometry and should scale no matter how complex (vs. simple benchmarks) 
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the geometry is.  In this work for the sake of a fair comparison we were restricted to use APC’s; 

MCNP’s setup time for any of its traditional cells is similar. 

 

When a small number of elements/cells is adequate to describe the geometry, the CSG capability 

outperforms the UM capability because of its ability to quickly build the “other side cell lists”.  If 

the “other side cell lists” do not exist, MCNP must perform an n-squared search over all cells to 

construct them.  In situations where the CSG capability is still building these lists, the UM 

capability has shown better performance.  Users whose models require very large element/cell 

counts (> 1million) may be curious to know which method is more efficient.  The answer is 

dependent on the number of histories required to reach the desired precision.  Based upon the 

results presented here, it is doubtful with these very large element/cell counts that the lists will be 

built in time to make the CSG capability more efficient than the UM capability. 

 

The majority of this work was based on single part models.  Extrapolation of these results to 

complex, multi-part models may not be straightforward, but is the next logical step to pursue and 

prove.  In our limited experience, initialization times remain reasonable if element counts do not 

greatly exceed ~50,000 elements per part and execution times can vary by +/- 20%, Reference 

[5], if the models are constructed from multiple parts in lieu of one large part. 

 

With the addition of the UM capability, MCNP users have another method in which to construct 

geometry models.  The user will need to decide which of these several available methods is best 

for their problem under consideration.  While the UM capability may not be the method of 

choice for simple geometry problems, it was used with these simple benchmark problems to 
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demonstrate and understand performance issues.  We expect the UM feature to perform in a 

similar fashion with more complex problems.  Our in-house, complex-model work mentioned in 

the introduction to this paper leads us to believe that the findings of this paper will hold in these 

situations.  Given the ability to more easily create complex models with CAE tools, no matter the 

element count, and the much shorter problem initialization times, even with a factor of 2 to 3 

poorer calculational performance, the UM capability may ultimately be the better overall option 

to use. 

 

7. FUTURE WORK 
 
This work pointed out an issue in the unstructured mesh tracking routines regarding the lack of 

intelligent selection of the appropriate elemental intersection face; this should be corrected in the 

near future, provided the solution does not significantly impact memory requirements for 

implementation.  The correction should only make the unstructured mesh capability faster than 

what currently is in the MCNP6 Beta 2 release. 

 

Recent work by developers advocating a CAD-tracking methodology as the solution to 

generating and using complex geometry models in Monte Carlo calculations [8] shows that 

technology to be a factor of ~5 slower than tracking with the legacy CSG methodology.  At this 

time it seems highly unlikely that a comparison similar to the one presented in this paper can be 

made between the UM and the CAD-tracking methodology of Reference [8], where tracking 

takes place on the CAD geometry.  However, it would be informative to have as direct a 

comparison as possible between the CAD-tracking methodology and the UM capability.  Based 

on what is known today, there probably will be situations where one geometry treatment will be 
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faster than the others.  However, where detailed results are needed for multi-physics work or 

visualization, it appears that the UM geometry will be the one to use since results on the mesh 

are produced almost automatically for little additional performance penalty.  Monte Carlo 

practitioners should be aware of the pros and cons of each and then use the method that is best 

for their needs. 
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