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MCNP6 for Criticality Accident Alarm Systems — A Primer

Brian C. Kiedrowski
Los Alamos National Laboratory
XCP-3: Monte Carlo Codes

Introduction

MCNP6 is a Los Alamos National Laboratory (LANL) developed, general-purpose Monte Carlo radiation
transport simulation package [1]. The code is capable of transporting a broad range of particles for numerous
applications. MCNP6 has continuous-energy neutron and photon physics that make it suitable for both
criticality and shielding problems. The analysis of a criticality accident alarm system (CAAS) combines
methodologies and techniques for both classes of problems, and the requisite knowledge for both is quite
different in some areas. For this reason, a primer has been created with the focus on teaching criticality
safety practitioners the Monte Carlo techniques needed to analyze a CAAS.

This primer specifically focuses on the Monte Carlo transport techniques for CAAS design. The use of
radiation transport codes is a small portion of the overall design process, which is preceeded and followed by
many other design calculations and decisions. Those readers unfamiliar with the design of CAAS systems are
directed to a PNNL report by Greenfield [2], which gives a thorough overview of the CAAS design process.
This document gives reference to applicable standards and regulatory requirements and how to meet them,
which is not the subject of this primer. The PNNL report explains where radiation transport codes such as
MCNP play a role in this process, and this primer is meant to provide a more in-depth set of lessons for this
portion of the design process.

This is done by way of several exercises that successively do more analysis of the same system. First the
basics of setting up and running a simple criticality calculation is reviewed. Next, an accident configuration
is investigated and the neutron/gamma source is obtained for the CAAS calculation. Then, how to set up a
CAAS facility geometry with detector tallies is explained. Methods for detailed dose calculations from the
accident are given. Since these calculations are often computationally inefficient, several applicable variance
reduction techniques are explained to allow practitioners to obtain answers in a reasonable amount of time.

One additional aspect of using codes that is not addressed in this document, but should be emphasized,
is validation. The MCNP code development team at LANL performs a fairly large suite of validation tests
routinely throughout software development. The nature of these tests is to cover a broad swath of applications
and not necessarily to go deep into any specific one — doing so would be impossible considering the myriad
of potential uses of MCNP. As with any software simulation tool, it is up to the end user to ensure that a
specific code and its associated data libraries are capable of solving his or her problems. The CAAS designer
must therefore consult and satisfy all regulations and institutional requirements before using MCNP or any
other software tool for perfoming such analyses.

The lessons herein assume some basic understanding of using MCNP6 or previous versions. Requisite
knowledge in creating input files representing simple geometries and running calculations is assumed. A
basic understanding of both criticality (KCODE) and fixed-source (SDEF) problems is required. Many of
the basic concepts are reviewed, but many details are absent for brevity, and beginners are directed to other
resources. Namely, the MCNP Manual, Vols. T [3] and II provide an overview of the theory and practice
of using MCNP. Specific sections will be called out throughout this primer that the interested reader can
pursue for supplemental information. Vol. T is available on the MCNP website (mcnp.lanl.gov), whereas
Vol. 1II is only available on the MCNP DVD because of export control issues. Additionally, the MCNP5
Criticality Primer [4] is also a very detailed reference that is available on the MCNP website. Readers
unfamiliar with criticality calculations are strongly encouraged to review that document first, as it contains
basic information on setting up criticality problems and running MCNP. Another useful reference is the
PNNL Material Compendium [5], which contains compositions of a large number of relevant materials — an
electronic copy may be obtained on the MCNP website.



Problem Statement

For the analysis, a hypothetical accident location and type is chosen based upon similarly hypothetical
analysis that would have been done for determining credible minimum accidents of concern. In reality, the
“starting point” for this primer would already have been a significant amount of work, and represents only
one of many accidents that would need to be analyzed for a full CAAS design. Again, the point of this
primer is not to teach how to design a CAAS, but to illustrate the MCNP techniques required or helpful in
that design.

Suppose a cylindrical tank of plutonium nitrate solution at LANL that has been overfilled to the point
of supercriticality. This tank resides in a simplified experimental facility described. The details of the
experiment and facility are described in Exercise 1.

MCNP6 is to be used to determine the neutron and gamma sources, along with personnel doses as a
function of position. Also, suppose a specific configuration of detectors has been proposed (again, from
previous, hypothetical analyses), and MCNP6 is to be used to find the doses delivered to one of these
detectors. Personnel doses from neutrons and photons, arising from the accident, throughout the facility are
also desired.

Exercises

This primer contains seven exercises. Exercises 1-4 go through defining the geometry and writing a fission
source file to be used in fixed-source calculations. Exercise 1 focuses on setting up the geometry and reviews
the basics of criticality calculations, exercise 2 discusses fission source convergence and plotting of results,
exercise 3 shows how to create a “surface-source file” in an eigenvalue calculation, and exercise 4 demonstrates
how to read that file in a fixed-source calculation. Exercises 5-6 focus on solving a source-detector problem.
Exercise 5 sets up the geometry and tallies, and exercise 6 discusses the variance reduction techniques that
are useful for solving it. Exercise 7 discusses mesh tallies and personnel doses throughout a facility.



Exercise 1: Geometry & Criticality Review

Recall that the MCNP input file has four different sections or blocks (excluding the message block). The
first section is the title card (lines in an MCNP input are referred to as “cards” as homage to the days of
punch card computing), which is a user comment that occupies the first line of the input text file. The
second section is a list of cells or cell block, followed by one (and only one) blank line. The third section
lists the surfaces (surface block) that are used to define the cells in the previous section. Like the cell block,
the surface block ends with a blank line. The fourth section is the data block, which contains all the data
cards used for materials, importances, tallies, criticality controls, and everything else about the problem.
The MCNP input file ends with an optional blank line; anything after that are solely user comments ignored
by MCNP.

There are many philosophies for setting up an MCNP input file and what naming conventions to use. So
long as these produce valid input files, none of them is wrong. Some styles, however, tend to produce clearer
and easier-to-read input files, especially for those who did not set up the original file.

In this primer, the following conventions are used: First, entries on like cards are formatted to line
up in columns where possible. This makes the file easier to read and errors easier to detect, and is a
strongly recommended practice. Secondly, cell properties such as importances are specified on the cell cards.
Alternatively, there are data cards available for this purpose. Third, materials, surfaces, and cells all have
specific number ranges and do not overlap. Here, materials are given numbers 1-9, surfaces are given numbers
10-99, and cells are assigned numbers 100 and higher. While it is perfectly acceptable to have cell 1 being
defined with surface 1 and containing material 1, these multiple definitions can be confusing to a reader
encountering an input file for the first time. Fourth, the cell, surface, and data cards are grouped into like
entries (e.g., all the materials are listed together) and separated by comments.

First, create a text file called caas1l.txt. This file will be where the MCNP commands or cards will
be placed. Note that older versions of MCNP only allow for file names up to eight letters total, including
suffixes. If using an older version, choose a shorter file name or omit the .txt suffix.

A schematic of the facility geometry is given in Fig. 1. The facility has six rooms, three across (z
direction or east-west), and two down (y direction or north-south). Each room is 10 meters by 10 meters.
The walls are all 0.5 meters thick. The height of each room is 3 meters. The floor extends down 0.5 meters,
and the ceiling is 0.1 meters thick. Doorways connect the rooms as shown in the schematic, they are all 1
meter wide, and 2.5 meters tall.

The north center room contains the cylindrical fissile solution tank. The center of the cylindrical tank is
2 meters from the north wall, and 2 meters from the west wall. The tank has an inner diameter of 1 meter,
and a radial thickness of 0.5 cm. The tank holds 1 meter of solution in height, and the base is 1 cm thick.
The plutonium nitrate solution height for the accident being analyzed is 12.6 cm.

The southeast room contains a labyrinth wall. Like with the doorways, the hallway has a width of 1
meter as are its doorways. The doorway separating the labyrinth from the rest of the southeast room is 3
meters high, unlike the other doors, which, again, are 2.5 meters.

First, the point where the origin is located must be selected. For this model, a convenient choice is the
location where the center of the cylindrical tank touches the floor. Now the surfaces can be defined.

Let surfaces numbered 10-19 be those pertaining to the solution tank. There are multiple ways to define
the surfaces needed for the tank. A convenient choice that allows easy adjustment of the solution height
involves using two right-circular cylinder macrobodies (RCC’s) and a plane parallel to the z-axis (PZ). One
RCC is needed to define the inside of the tank, and another to define the outside. The PZ separates the
solution from the air. Recall the format for the RCC is:

ID RCC VX VY VZ HX HY HZ RAD

Here ID is the surface index, RCC is the surface type label, VX VY VZ are the z,y, z coordinates of the
base, HX HY HZ describe a vector (with magnitude) for orienting the axis, and RAD is the cylinder’s radius.
The two surfaces for the cylinder are therefore

0 0 101 50

10 rcc 1
0 0 0 100 50.5

00
11 rcc 00



The PZ surface has one argument, the offset from the z = 0 plane. For this problem, the PZ is
12 pz 13.6

The next surfaces to be defined are those for the rooms and the doorways. Let the surfaces for the
rooms be numbered 20-29, and the doorways 30-39. For this purpose, the rectangular parallelpiped (RPP)
macrobody is useful. The form for the RPP is

ID RPP X1 X2 Y1 Y2 Z1 72

Here X1 is the lower x coordinate, X2 is the upper = coordinate, and the y and z coordinates are similar.
A consistent ordering scheme for the rooms and doorways is useful. One choice that is used here is to go left
to right going from top to bottom, similar to reading a page of English text. The surfaces for the rooms are

20 rpp -1250 -250 -800 200 0 300
21 rpp -200 800 -800 200 0 300
22 rpp 850 1850 -800 200 0 300
23 rpp -1250 -250 -1850 -850 0 300
24 rpp -200 800 -1850 -850 0 300
25 rpp 850 1850 -1850 -850 0 300

Similarly, the RPP’s for the doorways can be defined

30 rpp -250 -200 -800 -700 0 250
31 rpp 800 850 100 200 0 250
32 rpp -1250 -1150 -850 -800 0 250
33 rpp 700 800 -850 -800 0 250
34 rpp -250 -200 -1850 -1750 0 250
35 rpp 800 850 -1850 -1750 0 250
36 rpp 1750 1850 -1900 -1850 0 250

Now the solution tank and the rooms with their connecting doorways are defined. Next is the structure
of the building itself. Suppose surface 99, an RPP, will be the “bounding box” for the building. This has
the following definition:

99 rpp -1300 1900 -1900 2560 -50 310

This, however, leaves out the wall for the labyrinth, which can be represented as another RPP. Let
surfaces 40-98 be reserved for any other objects in the rooms, and count the labyrinth wall RPP as one of
these. This RPP is

40 rpp 950 1000 -1850 -950 0O 300

This defines all the surfaces needed for the facility and accident. A completed list with comments would
look as follows:

c ### surfaces

c
c >>>>> critical experiment tank

10 rcc 0 0 1 0 0 100 50

11 rcc 0 0 O 0 0 101 50.5

12 Pz 13.6

c

c >>>>> rpp’s for the empty space in the rooms

20 rpp -1250 -250 -800 200 0 300 $ northwest room

21 rpp -200 800 -800 200 0 300 $ north (accident) room
22 rpp 850 1850 -800 200 0 300 $ northeast room



23 rpp -1250 -250 -1850 -850 0 300

©*

southwest room

24 rpp -200 800 -1850 -850 0 300 § south room

25 rpp 850 1850 -1850 -850 0 300 $ southeast room

c

c >>>>> doorways

30 rpp -250 -200 -800 =700 0 250 $ nw. to n. door
31 rpp 800 850 100 200 0 250 $ n. to ne. door
32 rpp -1250 -1150 -850 -800 0 250 $ nw. to sw. door
33 rpp 700 800 -850 -800 0 250 $n. tos. door
34 rpp -250 -200 -1850 -1750 0 250 $ sw. to s. door
35 rpp 800 850 -1850 -1750 0 2560 $ s. to se. door
36 rpp 1750 1850 -1900 -1850 0 250 § sw. exit

c

c >>>>> other objects in rooms

40 rpp 950 1000 -1850 -950 0 300 $ labyrinth wall

c

c >>>>> building structure
99 rpp -1300 1900 -1900 250 -50 310

The surfaces are defined, but the cells can be created, the materials need to be defined. Recall these
are done in the data block. For now, there are four materials needed: (1) the plutonium nitrate solution,
(2) the stainless steel for the tank, (3) the air, and (4) the concrete for the building. The numbering will
respectively be materials 1-4. The materials are defined with a card called M, with the following format:

Mn  ZAID1 FRAC1 ZAID2 FRAC2

Here n is the index of the material, ZAID and FRAC are the isotopic ZAID and its corresponding atomic
(or weight if negative) fraction. There may be an arbitrary number of isotopes in a material. The fractions
need not sum to one; MCNP will renormalize them.

For criticality calculations, thermal scattering effects may be important. When a neutron has energies of
a few eV or less, it can interact with vibrational states of atoms or crystalline lattices — this is often referred
to as the S(a, 3) law. The former effect is most important for light nuclides, especially hydrogen. In this
system, the most important effect is hydrogen bonded to a water molecule. This is done by specifying the
MT card:

MTn  THERMLAW1 THERMLAW2

Here n is the same material index specified in the corresponding M card. THERMLAW is the thermal scattering
law name. The isotope that it modifies is defined in the data. A few common THERMLAW types are lwtr for
light water, poly for polyethylene, and grph for graphite — a full listing may be found in Appendix G of
the MCNP manual. The number of thermal laws is only limited by the number of isotopes in the material
and the availability of such data, but two thermal laws cannot be used for the same isotope (i.e., it is not
possible in MCNP for hydrogen to be bonded both to water and polyethylene in the same material). For
the plutonium nitrate solution, air, and concrete, the light-water thermal scattering law should be used for
hydrogen.

The plutonium nitrate solution material definition is:

¢ plutonium nitrate solution

ml 1001 6.0070e-2
8016 3.6540e-2
7014 2.3699e-3
94239 2.7682e-4
94240 1.2214e-5
94241 8.3390e-7
94242 4.5800e-8

mtl lwtr



The stainless steel material definition is:

c stainless steel
m2 24050 7.1866e-4

24052 1.3859e-2
24053 1.5715e-3
24054 3.9117e-4
26054 3.7005e-3
26056 5.8090e-2
26057 1.3415e-3
26058 1.7853e-4
28058 4.4318e-3
28060 1.7071e-3
28061 7.4207e-5
28062 2.3661e-4
28064 6.0256e-5

The material definition for dry air is:

c dry air (typical of American Southwest)

m3 1001 1.7404E-10
1002 1.3065E-14
2003 8.3540E-16
2004 4.5549E-10
6000 1.11008E-08
7014 3.8981E-05
7015 1.3515E-07
8016 9.1205E-06
8017 3.4348E-09
18036 3.0439E-10
18038 5.3915E-11
18040 8.0974E-08
36078 1.7811E-14
36080 1.1164E-13
36082 5.6154E-13
36083 5.49985E-13
36084 2.69359E-12
36086 7.98498E-13
54124 2.30549E-13
mt3 lwtr

The material definition for Los Alamos concrete is:

c los alamos concrete

mé4 1001 0.00842
8016 0.04423
13027 0.00252
14028 0.014690958
14029 0.000718176
14030 0.000460866
11023 0.00105
20040 2.84037E-03
20042 1.89571E-05
20043 3.95550E-06
20044 6.11198E-05



20046 1.17200E-07
20048 5.47910E-06
26054 0.000041788
26056 0.000632003
26057 0.000014347
26058 0.000001862
19039 6.43481E-04
19040 8.07300E-08
19041 4.64384E-05

mt4 lwtr

With the surfaces and materials defined, there is now enough information to define the cells. The format
for the cell is

ID MAT RHO EXPR IMP:N=k

ID is a user-defined cell index, MAT is the material index corresponding the the n on the material card
(zero is a special material for vacuum), RHO is the density of the cell material (this is absent for vacuum),
EXPR is a list of Boolean combinations of surfaces, and IMP:N=k says that this cell has a neutron importance
of k. Note that the density is positive for atomic density (atoms per barn per cm) or negative for mass
density (grams per cubic cm) EXPR has the following simple form:

S1 B1 S2 B2 ..

The S are surface indicies and are either positive or negative. The sign of S denotes whether it is with
respect to the positive or negative sense of the surface. MCNP evaluates the surface equation for the current
x,y, z and gets a result that is either positive, negative, or zero. If the evaluation is negative, for example,
and the sign of S is also negative, then this evaluates to “true”. Likewise, if the sign of S is positive (and
the evaluation of the surface equation is still negative), then it is “false”. Evaluations of zero occur at the
surface boundary. For surfaces such as PZ, the value is positive if z is greater than the entry on the PZ
and negative if less. For macrobodies, the sense is negative if inside and positive if outside. The B are is a
Boolean operator that is either a space for “and” or a colon for “or”. The cell is defined to be everywhere
that EXPR evaluates to be true. Precedence rules of doing all “ands” prior to “ors” are followed in evaluating
EXPR. Parentheses may also be used like standard mathematics to control the order of operations.

For now, neutron importances will either be 1 or 0. The former means to transport particles, and the
latter means that all particles entering that cell are to be terminated.

In MCNP, all of space must be defined. Typically, there one or more cells that have a zero importance
surrounding the region of interest. This can be thought of as a vacuum boundary for truncating the geometry
and the cells are often referred to as “the rest of the world”.

Like with the surface cards, it is important to have a numbering strategy. Recall that numbers 100 and
above were assigned for surfaces. For staring, assign cells 100-199 for any cells in the solution tank; even
though having 100 cells available is excessive in this case, it does keep the numbering simple. Cells 200-299
are assigned from the empty space in the rooms and doorways. Cells 300-899 are reserved for anything else
that may be inside the rooms. Cells 900-999 are for the building and the rest of the world. Again, this choice
of labeling is arbitrary, but it is a relatively organized labeling scheme.

For the solution tank, three cells are needed: One for the solution, another for the air above the solution,
and a third for the stainless steel tank itself. In principle, the air above the solution could be combined
with the to-be-defined cell for the north room, but this would be more complicated given the choice of
surfaces made earlier. Generally speaking, the tracking in MCNP is more efficient with having more simpler
cells versus fewer complicated ones — any definition needing parentheses in particular tends to be more time
consuming. The Boolean combination of operators is relatively straightforward and given here:

100 1 9.9270e-2 -10 -12 imp:n=1
101 3 4.8333e-5 -10 +12 imp:n=1
102 2 8.6360e-2  +10 -11 imp:n=1



Note that having the + sign is optional, but is there for clarity. Next the cells for the rooms need to be
defined:

200 3 4.8333e-5 -20 imp:n=1
201 3 4.8333e-5 -21 +11 imp:n=1
202 3 4.8333e-5 -22 imp:n=1
203 3 4.8333e-5 -23 imp:n=1
204 3 4.8333e-5 -24 imp:n=1
205 3 4.8333e-5 -25 +40 imp:n=1

Note the convention of going left to right and top to bottom is followed for the ordering. Also, the north
and southeast rooms specifically exclude the solution tank and labyrinth wall surfaces respectively. The
doorways are next:

206 3 4.8333e-5 -30 imp:n=1
207 3 4.8333e-5 -31 imp:n=1
208 3 4.8333e-5 -32 imp:n=1
209 3 4.8333e-5 -33 imp:n=1
210 3 4.8333e-5 -34 imp:n=1
211 3 4.8333e-5 -35 imp:n=1
212 3 4.8333e-5 -36 imp:n=1

Finally comes the facility and the rest of the world. There are numerous ways with the surfaces chosen
that would define valid cells for this. One simple choice is to let everything except for the labyrinth wall
would be the area inside surface 99, the RPP for the building, and excluding the RPP’s for the rooms and
doors. The labyrinth wall is a separate cell. Finally, the rest of the world (denoted by cell 999), is everything
outside of surface 99, and has a zero importance. These are as follows:

900 4 7.6400e-2  -99 +20 +21 +22 +23 +24
+25 +30 +31 +32 +33

+34 +35 +36 imp:n=1
901 4 7.6400e-2  -40 imp:n=1
999 0 +99 imp:n=0

It is possible further subdivide cell 900 into separate regions by adding more surfaces. This may be
recommended as the facility becomes more complicated to keep the amount of Boolean evaluations during
tracking reasonable. It turns out for this fairly simple facility, the tracking performance is quite good even
for the fairly complex definition of cell 900.

For completeness, the cell cards are

### cells

c
c
c >>>>> accident tank
c

100 1 9.9270e-2 -10 -12 imp:n=1
101 3 4.8333e-5 -10 +12 imp:n=1
102 2 8.6360e-2 +10 -11 imp:n=1
c

¢ >>>>> facility rooms: nw. -> ne., sw. —> se.

c

200 3 4.8333e-5 -20 imp:n=1
201 3 4.8333e-5 -21 +11 imp:n=1
202 3 4.8333e-5 -22 imp:n=1
203 3 4.8333e-5 -23 imp:n=1
204 3 4.8333e-5 -24 imp:n=1



205 3 4.8333e-5 -25 +40 imp:n=1
C
c >>>>> doorways

c
206 3 4.8333e-b -30 imp:n=1
207 3 4.8333e-b -31 imp:n=1
208 3 4.8333e-5 -32 imp:n=1
209 3 4.8333e-5 -33 imp:n=1
210 3 4.8333e-5 -34 imp:n=1
211 3 4.8333e-b -35 imp:n=1
212 3 4.8333e-b -36 imp:n=1
c
¢ >>>>> facility and rest of world
c
900 4 0.0764 -99 +20 +21 +22 +23 +24 +25

+30 +31 +32 +33 +34

+35 +36 imp:n=1
901 4 0.0764 -40 imp:n=1
999 0 +99 imp:n=0

With the cells, surfaces, and materials defined, the input file is almost complete. The remaining thing
that needs to be added are the criticality controls and initial guess for the fission source. The criticality
control is done with the KCODE card

KCODE  BATCHSIZE KGUESS NSKIP NCYCLES

BATCHSIZE is the target number of particles to run each cycle or iteration. For scoping runs, a typical
number for this is a few thousand. During production runs, recommended numbers are ten thousand or
higher. In theory, the value of k is biased low for finite batch sizes and the magnitude of this bias decreases
with the size of the batch; in practice, this bias becomes negligible for batch sizes of 10,000 or more. KGUESS is
an initial guess for k. So long as the guess is reasonable, this does not particularly matter for the calculation,
and usually 1.0 will suffice for most problems. NSKIP is the number of iterations to skip before accruing
results. The starting source guess is usually not representative of the true fission source, and iterations
are required to find the stationary distribution. Methods for picking NSKIP will be discussed in Exercise 2.
NCYCLES is the total number of cycles to run and must be greater than NSKIP. This number should usually
be at least 100 to help ensure the statistical analysis that MCNP does to determine if the calculation is
incorrect or faulty in some way is valid. Generally speaking, it is better from a parallel efficiency perspective
to have larger batch sizes and fewer cycles, so long as the number of active cycles is not too low.

The initial fission source guess can be provided using either an SDEF or KSRC card. Which one to use
depends on the problem. For simpler problems that are geometrically small, KSRC is usually the more
convenient option, as the number of cycles going from even a very poor source guess to a fully converged
one is typically small. For larger problems where convergence will take longer, the additional flexibility that
SDEF offers is very useful. The format for KSRC is

KSRC X1 Y1 Z1 X2 Y2 Z2

The entries come in triplets, which are x,y, z coordinates of points in space to start particles. The number
of starting source points is arbitrary. The format for SDEF is far more complicated, and to not get bogged
down in spurious details, the reader is referred to the MCNP Manual.

To find k in a scoping run, use a batch size of 5000, initial guess of 1.0, skipping 20 cycles and running
120 total. Because this system is relatively small, a point source at * = 0,y = 0,2z = 5 cm is a convenient
choice. These cards are as follows:

kcode 5000

1. 20 120
ksrc 0.0 0.

0
0 5.0



Now everything is ready to run this problem in MCNP. Before performing transport, however, it is always
important to first visually check the geometry using the MCNP plotter, VisEd, or another tool of choice.
For this primer, the MCNP plotter is used, which requires an X11 client to be running on the local machine.
To invoke the plotter, open a DOS prompt on Windows, a terminal on Unix/Linux, or an xterm on MacOS.
Navigate to the directory where the input file resides and type:

mcnp6 i = caasl.txt ip

This assumes that mcnp6 has been aliased as a valid command by the MCNP installer. The i =
caasl.txt tells MCNP which input file to use. The ip means to execute two MCNP modules: (1) read the
input file, and (2) load the plotter. Note that the default is ixr, which means to (1) read the input file, (2)
load the cross sections, and (3) run particle transport.

If everything was successful, a window should appear. If not, the most common error is from not loading
or configuring the X11 client correctly.

Click near the center of the new window. A view of the solution should appear. To correct the latter of
these issues, click on the box in the lower left corner with the text Click here or picture or menu. The
box should then show Enter Data>. Type

extent 150

to zoom out. An axial slice of the solution can should appear on the screen. What is on the screen should
agree with what is shown in Fig. 2.

Next on the panel of buttons on the left, locate the one that says XY and click on it. Unfortunately, the
current view is not at all useful because it is a slice through the z = 0 cm plane. To adjust the z slice, click
on the lower-left box again and type

pz 10

to change it to be z = 10 cm. The view on the screen should match what is in Fig. 3.
To get a view of the entire facility, click on the lower-left box again and type

extent 2000
To have a more centered view, click on the lower-left box again and type
origin 250 -850 10

This will relocate the origin to have a clearer view. The image in Fig. 4 should match what is displayed
on the screen. If there are any dashed red lines or any other areas that are not colored inside the facility,
something is wrong with the cell or surface cards. From here, experiment with the plotter and inspect the
geometry and try to locate any oddities. When finished, click on the button with End in the lower-right
corner. Do not proceed until the geometry is correct.

Now that the input file is as desired, it is time to run the problem. In the command prompt, type

mcnp6 i = caasl.txt o = caaslout.txt r = caaslrun

If the machine this is being run on has multiple cores, then adding tasks n to the command line, where
n is the number of cores available on the machine, will make the problem run faster. The o = caaslout.txt
tells MCNP to write the output to a file called caaslout.txt, and the r = caasirun tells MCNP to create
a binary dump file called caasirun that will be used later for plotting results. Again, older versions of
MCNP have a limit of eight characters; is this is an older version, use less.

Depending on the speed of the machine, the problem may take several minutes to run to completion. If
the problem finishes successfully, MCNP should print out the final estimated value of k, which should be
about 1.018 depending on the nuclear data (the results here use ENDF/B-VIIL.0 data).

The screen output is:
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source distribution written to file srctp cycle= 120

run terminated when 120 kcode cycles were done.
=====> 51.03 M neutrons/hr (based on wall-clock time in mcrun)
comment .
comment. Average fission-source entropy for the last half of cycles:
comment . H= 6.48E+00 with population std.dev.= 3.22E-02
comment.
comment .
comment. Cycle 19 is the first cycle having fission-source
comment . entropy within 1 std.dev. of the average
comment . entropy for the last half of cycles.
comment . At least this many cycles should be discarded.
comment.
comment. Source entropy convergence check passed.
comment .
final k(col/abs/trk len) = 1.01882 std dev = 0.00130
ctm = 161.90 nrn = 425707361
dump 2 on file runtpj nps = 600218 coll = 30033440

mcrun 1is done

Open the output file testout.txt and search for the string “final estimated”. This should bring the text
editor to the results box. This should appear as:

the final estimated combined collision/absorption/track-length keff = 1.01882 with an estimated standard deviation of 0.00130
the estimated 68, 95, & 99 percent keff confidence intervals are 1.01752 to 1.02012, 1.01624 to 1.02140, and 1.01540 to 1.02225
the final combined (col/abs/tl) prompt removal lifetime = 4.5414E-04 seconds with an estimated standard deviation of 2.0035E-06

the average neutron energy causing fission = 2.3352E-02 mev
the energy corresponding to the average neutron lethargy causing fission = 1.6179E-07 mev

the percentages of fissions caused by neutrons in the thermal, intermediate, and fast neutron ranges are:
(<0.625 ev): 89.68} (0.625 ev - 100 kev):  9.06% (>100 kev):  1.25}

the average fission neutrons produced per neutron absorbed (capture + fission) in all cells with fission = 1.6925E+00
the average fission neutrons produced per neutron absorbed (capture + fission) in all the geometry cells = 1.1455E+00

the average number of neutrons produced per fission = 2.876

Note the results of the average number of neutrons produced for fission; this will be an important quantity
for determining the magnitude of the source later. If this roughly matches what is on the screen, then this
exercise has been completed successfully.
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Figure 1: Exercise 1: Schematic of the facility geometry.
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Figure 2: Exercise 1: Axial view of the can of plutonium nitrate solution.

12



10/ 14/ 12 14:16: 59
plutoniumnitrate sol ution tank
inaroom

probid = 10/14/12 14:16: 33
basi s: XY

( 1.000000, 0.000000, 0.000000)
( 0.000000, 1.000000, 0.000000)
origin:

( 0. 00, 0. 00, 10. 00)
extent = ( 150. 00, 150. 00)

Figure 3: Exercise 1: Radial view of the can of plutonium nitrate solution at z = 10 cm.
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Figure 4: Exercise 1: Slice of the entire facility in the z-y plane at z = 10 cm
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Exercise 2: Source Convergence and Results Plotting

Since the fission source is usually unknown prior to running the calculation, a guess must be provided and
an iterative method must be employed to converge it before accruing tally results. Otherwise, the answers
will be biased. The number of iterations required depends on both the characteristics of the problem and
how close the source guess is to the true fission source.

MCNP6 has a diagnostic called the Shannon entropy that is useful for assessing source convergence.
The Shannon entropy is a measure of the shape of a distribution — the more “spread out” the distribution,
the higher its Shannon entropy. At the beginning of the calculation, a uniform, coarse mesh is placed over
the problem geometry. Each cycle, the fission source points are binned according to their locations and a
quantity called the Shannon entropy of the fission source distribution is obtained. By observing trends in
the Shannon entropy, and observing its convergence, the convergence of the underlying fission source may
be inferred.

The most effective means of doing this is by visualizing a plot of the Shannon entropy as a function of
cycle. The Shannon entropy is printed both to the output file and the screen. In principle these results could
be parsed, and placed into a spreadsheet or plotting tool of the user’s choice. Alternatively, MCNP has the
capability to plot k£ and the Shannon entropy as a function of cycle via the tally plotter. To do this, MCNP
requires a run-tape (runtpe). For the run in the previous exercise, this is called caasirun, and this shall be
needed now.

In the command prompt, type

mcnp6 r = caaslrun z

The z option tells MCNP to invoke the tally plotter. Like with the geometry plotter, X11 must be
enabled to use the tally plotter. The user should then find a command prompt where MCNP expects a tally
plot command. First, it may be instructive to plot k as a function of cycle. The collision estimate of k as a
function of cycle may be obtained by entering

kcode 1
into the command prompt. Gridlines may be added to the plot by typing
scales 2

This is displayed in Fig. 5. While the plot has a bit of statistical noise, the trend shows that convergence
in k occurs at about 20 cycles. Unfortunately, convergence in k is not the same as convergence in the fission
source, which is necessary for getting an accurate estimate. For this, the trend in the Shannon entropy needs
to be observed. To get this from the tally plotter, type

kcode 6

Again, there is noise in the plot, but it appears to converge around 25 cycles. Figure 6 gives a plot of
Shannon entropy as a function of cycle. Therefore, the user should modify the KCODE card to skip at least
25 cycles, probably more to be conservative.

Based on this information, copy caasl.txt to caas2.txt and modify the KCODE card to skip 30 cycles
while keeping the number of active cycles at 100. Also, increase the batch size from 5000 to 20000, since the
next exercise require a more resolved fission source. The KCODE card should now read

kcode 20000 1.0 30 130
Rerun the problem:

mcnp6 i = caas2.txt o = caas2out.txt r = caas2run
The file results on the screen are:

source distribution written to file srctp cycle= 130
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run terminated when 130 kcode cycles were done.

=====> 104.59 M neutrons/hr (based on wall-clock time in mcrun)
comment .

comment. Average fission-source entropy for the last half of cycles:
comment . H= 8.19E+00 with population std.dev.= 1.45E-02
comment.

comment.

comment. Cycle 19 is the first cycle having fission-source

comment . entropy within 1 std.dev. of the average

comment . entropy for the last half of cycles.

comment . At least this many cycles should be discarded.

comment.

comment. Source entropy convergence check passed.

comment .

final k(col/abs/trk len) = 1.01723 std dev = 0.00063

This confirms that cycle convergence as well as the prediction of k; the results are within 2-o of each
other. As a check, a plot of the Shannon entropy also confirms this.
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Figure 6: Exercise 2: Shannon entropy of the fission source of each cycle.
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Exercise 3: Writing a Fission Source File

Until now, everything discussed should have been review for an experienced MCNP user in the field of
criticality. This exercise connects a criticality calculation to the shielding-type calculations needed for CAAS.
To obtain an accurate representation of the fission source for a CAAS calculation, a criticality calculation is
used to generate the source; this was reviewed in previous exercises. The next step is to get MCNP to write
the source, represented as a set of x,y, z points with emission energies, to a file. This file is then read into
MCNP in a fixed-source calculation, and tally results for detectors are then obtained.

MCNP has a “surface-source write” capability. Originally, this capability was designed to record particle
state information as it crosses surfaces, and write that state to a file. Later, this was extended to writing the
source points of a criticality calculation, although the name of a “surface-source write” remains, even though
it is a misnomer for this specific use of it. Unfortunately, this capability does not yet work in parallel, and
therefore the accelerations from threading cannot be used.

To tell MCNP to write a source file, the SSW card is used having the following format:

SSW CEL = C1 C2 ...

where the listing after CEL is a list of all fissionable cells in the problem. In this specific exercise, there
is only one fissionable cell, cell 100, so the modification to the input file is straightforward. Copy the file
caas2.txt from the previous exercise to a new file called caas3.txt and insert the appropriate SSW card
among the data cards. This new card is

ssw cel = 100

This will now have MCNP write a file containing source points in the active cycles. The default file name
is wssa, but this can be changed by including

wssa = filename

on the command line.

Before running the problem, one thing to consider is that the continuum of the fission source is being
approximated by a discrete set of points. It is possible to run multiple instances of these same particles with
different random number sequences, however, it is not possible to generate any new points subsequently.
Therefore, it is important to ensure the fission source is adequately captured during the calculation. For the
new settings on the KCODE card, approximately 100 times 20000 particles will be written, or 2 million. For a
small critical configuration such as this, 2 million should be sufficient, but may not be for large reactor-type
systems.

For this problem, let the file name of the surface source file be caassrc. Run the new problem by typing
in the command prompt

mcnp6 i = caas3.txt o = caas3out.txt r = caas3run wssa = caassrc
The following should appear on the screen:
surface-source file caassrc written with 2000601 tracks.

If this is so, then this exercise is complete.
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Exercise 4: Using the Fission Source File in a Fixed-Source Calculation

To test that this file was written successfully, it must be read back in by MCNP in a fixed-source calculation.
To get started, make a copy of caas3.txt to caaséd.txt.

Going from a criticality calculation to a fixed-source calculation has a peculiarity in how fission must be
treated. In the eigenvalue problem, the fission process was already accounted for. Therefore, in the fixed-
source problem, fission must be ignored or treated as capture. As a practical point of view, this configuration
is supercritical, so if this system were run in fixed-source mode, a divergent fission chain would eventually
occur and the simulation would never terminate — or at least not until it runs out of memory from storing
all the state information of progeny.

To treat fission as capture the NONU card is available. All cells where NONU = 0, fission is turned off.
There are two ways to specify this: (1) on the cell cards, or (2) as a list of numbers in the data cards where
the order of entries corresponds to the order that the cells are listed. Because any changes in the ordering of
the cell cards may have deleterious and unintended effects, it sometimes makes the most sense to list these
on the cell cards. So on each cell card, after the imp:n=1 append a nonu=0. This ensures fission is turned
off everywhere.

Next the KCODE, KSRC, and SSW cards must be removed. The NPS card must be inserted to tell MCNP how
many particles to run. Note that the total weight used in the calculation is equal to the number of particles
written to the surface-source file, regardless of the value of NPS, and the weight is modified accordingly.
Correspondingly, the results should not scale with NPS. If NPS is equal to the number of particles, then the
particles are transported as in the file. If it is is less, then a fraction of the particles are skipped and the
weight is readjusted. If it is greater, then some of the source particles are duplicated with lesser weight and
run with different random number sequences. In the latter case, the value of NPS reported (deceptively) at
the end of the calculation will match the number written to the surface-source file, even though numerous
trajectories have been simulated.

Next, MCNP must know to read the surface-source file. This is accomplished with the SSR card

SSR  CEL =C1 C2 ... WGT = W

The entries after CEL denote which cells to accept from the file. It is possible with the surface-source
write to record information about fissions in numerous cells, and then only transport the ones for individual
or a specific group of cells during the surface-source read. In this case, only cell 100 is available, so the
issue is irrelevant. The WGT entry is a modifier for the source weight, and is needed to scale the intensity of
the source to get doses and detector responses correct. The entry here is typically the number of neutrons
emitted in the criticality accident, which is determined from other means than MCNP. Often times, the data
available for this is the energy release, which can be used to find the total number of fissions in the event.
This number of fissions must be multiplied by an estimate of the number of neutrons released per fission v,
which can be obtained from the results of the criticality calculation used to generate the surface-source file.
While this is an approximation, it typically is a good one as fission v is a weak function of incident neutron
energy below a few MeV, which are the typical energies that cause fission in criticality problems.

For this problem, suppose the energy release is used to determine the magnitude of this event to be
1 x 10'® fissions. Given the magnitude of v is about 2.9 for this system, the multiplicative factor for the
weight is 2.9 x 10%%. The SSR card that needs to be inserted is

ssr cel = 100 wgt = 2.9el15

Next, MCNP needs to know the number of particles NPS to run. Suppose for this trial run, 100,000
histories is desired. Add an appropriate NPS card to the input file

nps 1leb

MCNP expects to read a file called rssa to get the source. Like with the surface-source write, this can
be overridden on the command line by adding

rssa = filename
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Because the source is located in a file called critsource, that is the argument for the command line.
Next, run the problem by typing on the command prompt

mcnp6 i = caas4.txt o = caas4out.txt r = caasd4run rssa = caassrc

If the problem runs to completion, then this exercise has been successfully completed. Note that the value
of NPS printed to the screen may differ from 1 x 10% because MCNP sampled histories with a probability of
about 1/20, the ratio of the specified NPS to the number of particles written to the surface-source file.
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Exercise 5: Defining the Detector

Now that the neutron source is available, the next step is to transport the neutrons into some detector
volume. First, copy caas4.txt to caas5.txt.

A detector must be defined. For simplicity, assume the detector is a sphere of polyethylene (density of
0.92 g/cc) with a radius of 5 cm. Realistic detectors are going to be far more complicated, but this will
suffice for pedagogical purposes. Suppose a detector location is chosen to be in the northwest room, centered
on its east wall, and just touching the ceiling. The spherical surface SPH may be used to define this. The
form for the surface is

ID SPH X0 YO Z0O  RAD

where X0 YO ZO are the coordinates for the center of the sphere and RAD is its radius. For the sphere at
this position, add the following surface card,

41 sph -255 -300 295 5.0
A material card for polyethylene with the appropriate thermal scattering law is needed:

¢ polyethlyene

m5 1001 2
6000 1
mth poly

The corresponding cell card is
300 5 -9.2000e-1 -41 imp:n=1 nonu=0

Also, the cell card for the northwest room must be modified to account for the subtracted space:
200 3 4.8333e-5  -20 +41 imp:n=1 nonu=0

At this point, the user should plot the geometry to ensure the detector has been placed appropriately.

Once the geometry is verified, the next step is to place the tally for the response. The response is the
energy deposited in the detector during the radiation event. This can be obtained using the energy-deposition
tally or the F6 type. The format is

F6:n c1C2 ...

Here n denotes the tally is for neutrons, and the C1 C2 ... are a list of cells for which the tally is to be
made. Since the cell number is 300, the tally definition is

f6:n 300

The units of the F6 tally are Mev/gram of the cell, which are usually inconvenient for working with.
Rather, this can be transformed to Gy or J/kg by a tally multiplier or FM card

fm6 1.6022e-10
Now that the tally is present, the problem is ready to be run. In the command prompt type
mcnp6 i = caasb.txt o = caasbout.txt r = caasbrun rssa = caassrc

and run the problem. Open the output file caaslout.txt in a text editor and search for the literal string
1tally. Below are the results of the tally and its relative uncertainty:

1tally 6 nps = 100429
tally type 6 track length estimate of heating.
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tally for mneutrons
number of histories used for normalizing tallies = 2000601.00

this tally is all multiplied by 1.60220E-10

masses
cell: 300
4.81711E+02

cell 300
0.00000E+00 0.0000

there are no nonzero tallies in the tally fluctuation chart bin for tally 6

It turns out no particles scored to the tally. This is expected because the tally cell is both small relative
to the geometry and located behind a significant amount of shielding. From here there are two options. The
first is to run many, many more particles, a brute force approach. Another way to ameliorate this, is to
employ variance reduction techniques.
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Exercise 6: Variance Reduction

Variance reduction techniques are a set of methods designed to increase the efficiency of the calculations. All
of the methods are mathematically proven to preserve the mean value of the tally — in other words, the answer
after a very large number of histories is the same. The variance reduction techniques each have parameters
that can be adjusted, and if these parameters are well chosen, then the calculation should converge more
quickly. Conversely, it is also quite easy to pick parameters that actually decrease the efficiency. Therefore,
there is a bit of judgment involved in deciding which parameters to employ and how to dial in the values of
the specific parameters to improve performance.

One thing of note is that many of the institutional standards and guidelines actually prohibit the use
of variance reduction techniques for design calculations. The presumption is that variance reduction tools
provide an extra set of “knobs” that can be used to get misleading results and (more precisely) incorrect
assessments of uncertainties. This issue arises because the relevant phase space of the problem is not
adequately sampled, and therefore the results are failing to capture important pieces of information. This is
not a unique problem with variance reduction techniques, as any Monte Carlo calculation may be susceptible
to such biasing. Variance reduction techniques, however, can be abused in such a way to exacerbate this
issue. Therefore, users are advised to exercise caution and reasonable judgment in evaluating the quality of
answers — codes should never be trusted as black boxes.

One diagnostic that MCNP offers are the statistical checks. There are ten checks performed on the
convergence trends and scoring behavior during the calculation. These look at what if any trends in the
convergence of the mean, relative uncertainty, variance of the variance (VOV), and the figure of merit (FOM)
there may be. MCNP performs a check as to whether the trend matches expected behavior (e.g., the mean
should have no trend and vary randomly, the relative uncertainty should decrease as the square root of the
number of histories, etc.). Also, relative uncertainty and the VOV — for VOV, think about having error
bars on the error bars of the results — are checked to ensure they are less than the canonical value of 0.1,
above which results have a significant chance of being questionable. Finally, MCNP does a check on the
scoring density function via the PDF slope, which checks to ensure enough very large, but rare contributions
have been sampled; this serves as a diagnostic for adequate sampling. Note that passing these tests does
not guarantee the reliability of results (it is impossible to construct such a test), but it offers confidence.
Ultimately, it is up to the user to determine whether the answers appear reasonable, and to use the statistical
tests as a guide for making that determination.

Variance reduction techniques usually try to achieve two competing goals. The first is to reduce the
amount of variance incurred per history (i.e., reduce the spread in the scores), and the second is to reduce
the amount of time per history. Usually doing the former harms the latter and vice versa. Therefore, picking
the appropriate set of variance reduction parameters involves balancing these two considerations, and there
is some optimal set that maximizes efficiency. Thankfully, as a practical consideration, there seems to be a
fairly large range of parameters (a kind of mathematical plateau) that are nearly optimal. Therefore, often
for a fairly small amount of effort on the part of the user, nearly optimal variance reduction parameters can
be obtained. Furthermore, because gains are minimal once this plateau is found; the user needs to be careful
not to invest too much time as there are diminishing returns (or even negative returns if more time is spent
tweaking parameters than had that time just been invested in grinding out the calculation) past a certain
point.

One important point about MCNP is that there are two variance reduction techniques on by default:
implicit capture (also called survival biasing in other codes) and the weight cutoff (more accurately, a weight
roulette game).

To understand implicit capture, it is first illustrative to understand how an analog Monte Carlo simulation
would occur. At a collision, suppose a neutron can either undergo scattering with probability p, or be
captured with probability 1 — p. A random number is selected from zero to one, and if that number is less
than p, the neutron scatters, continuing with a new energy and direction, otherwise, it disappears and the
code moves on to the next history.

In the non-analog case, each particle carries with it a statistical weight w that is multiplied by all tally
scores to preserve all means. In the analog case, the statistical weight is constant. With variance reduction
games, this weight changes throughout the history. For implicit capture, at a collision, rather than deciding
whether the neutron is absorbed or not, the neutron always scatters and has its weight multiplied by p. The
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net effect of that this, in the long run, produces mathematically identical means, but because the history
may continue and therefore contribute more to tally scores each history, the variance tends to be lower each
history. This technique tends to decrease the amount of variance per history, but increases the amount of
time per history.

Because the weight can get arbitrarily low with implicit capture employed, allowing for a large amount of
time to be spent on histories that contribute little to tallies, there needs to be some mechanism to selectively
cull these tracks, but in a statistically fair way. This is the weight cutoff or weight roulette game. When
the weight w falls below a certain user-defined value, a roulette came is played. A random number from
zero to one is obtained, and if that number is greater than ¢, the particle is terminated. Otherwise, the
particle survives, but with its weight multiplied by 1/q, increasing the particle weight. The effect of this
is to remove many of the low-weight histories that contribute little to tallies from the simulation, but keep
a certain fraction and weight their scores in a fair way to preserve mean values. Weight cutoff reduces the
amount of time per history, but tends to increase the amount of variance. The hope is that the amount of
additional variance incurred is more than compensated by the reduction in time per history.

These two techniques can be turned off or modified using either the CUT:N or PHYS:N cards. Sometimes
it may be useful to try and change the parameters to get better performance, but the defaults are typically
suitable for most applications.

For streaming problems of this sort, perhaps the most useful technique is also perhaps one of the most
difficult to understand, the DXTRAN sphere. A DXTRAN sphere is an artificial spherical surface typically
containing a tally cell. At each collision and source emission, angular biasing is performed to pull particles
toward the sphere. The probability space is split or partitioned into two pieces: one where upon collision,
the particle scatters directly toward the sphere, and streams without collision to the edge of the DXTRAN
sphere (the DXTRAN particle), and another where the particle continues as it would have with no DXTRAN
sphere (the non-DXTRAN particle). The DXTRAN particle has its weight reduced by the probability
density of scattering in the direction toward the sphere along with the exponential attenuation through
any intervening materials from collision or source point to the edge of the sphere. This DXTRAN particle,
from this point forward, ignores the DXTRAN game and transports normally. The non-DXTRAN particle
continues, producing more DXTRAN particles at subsequent collisions, but with one minor modification
to keep the game fair. If the non-DXTRAN particle happens to reach the sphere during the course of its
normal random walk, it is terminated, as that part of phase space within the sphere is no longer part of its
probability space partition.

This technique, in effect, forces particles to a small region of space that they would be otherwise very
unlikely to go. Such is the case of the detector in this large facility model. The DXTRAN spheres are defined
with the DXT card:

DXT:n X1 Y1 Z1  RI1 RO1 X2 Y2 Z2  RI2 RO2 R DWC1 DWC2

Here n is the particle type for neutrons (p for photons), X1 Y1 Z1 are the center of the first DXTRAN
sphere, RI1 RO1 are the inner and outer radii of the that sphere, subsequent DXTRAN spheres can be
defined similarly, and DWC1 DWC2 are upper and lower weight cutoff parameters. The inner and outer radii
of the spheres is a way to further refine the angular biasing toward the inner sphere; scattering toward the
inner sphere is five times as likely as scattering to the outer sphere. Unless there is a compelling reason to
the contrary, it is typically best to pick the inner and outer radii as the same. The weight cutoff or rouletting
parameters at the end of the list of spheres are important for ensuring that time is not spent on particles
with very low weight. If a particle is below DWC2, then the weight cutoff game is played to bring the weight
of the particle back to be above DWC1.

To get started, copy the file caas5.txt to caas6a.txt. For this problem, the DXTRAN sphere should
cover the detector region, the inner and outer radii being the same, with DWC1 and DWC2 being 5 x 1076 and
1 x 1075 respectively. This card is

dxt:n -255 -300 295 5.0 5.0 5e-6 1le-6

One other consideration that arises with DXTRAN spheres and sources is that the probability of being
emitted in the direction of the DXTRAN sphere must be known. Recall that only the direction change in
collisions matters (there is no incident directional dependence in MCNP), therefore it is appropriate to speak
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of the probability of scattering cosines —1 < p < 1 and the units of the probability density are per unit
cosine. The PSC parameter must be added to the SSR card to provide this information. Since the source
is from fission, which is isotropic, the probability of scattering is 1/2 everywhere (the total cosine range is
normalized to 2). The surface-source read card is now

ssr cel = 100 wgt = 2.9e15 psc = 0.5
Run the problem and analyze the output:
mcnp6 i = caasba.txt o = caasbaout.txt r = caasbarun rssa = caassrc

Notice that now the detector should have an appreciable number of scores, but the uncertainties are still
high, many of the statistical checks are not passed, and the problem takes significantly longer. Particularly
relevant are the tally fluctuation charts at the end of the output file. Notice the last column with the “figure
of merit”, which is a measure of how efficiently MCNP is evaluating the tally. The figure of merit is the
inverse of the product of the relative uncertainty squared and the computational time, which approaches a
constant as the number of histories goes toward infinity. Keep track of this number as it indicates whether
or not the variance reduction techniques are helping. The last line in the tally-fluctuation chart is

nps mean error vov slope fom
100429  9.1802E-06 0.2163 0.1584 2.4 22

Since the tally is for energy deposition and the largest scores are going to be from those particles with
the most energy to deposit, and much time is spent tracking low-energy neutrons scattering in concrete
that contribute relatively little, it makes sense to play rouletting on the low-energy particles. The energy
deposition tally is a product of the flux, the total macroscopic cross section, and the neutron heating. It is
possible to have MCNP plot these quantities to get an estimate of the multipliers. Cross section plotting
may be done with the following command:

mcnp6 i = caasba.txt rssa = caassrc ixz

Here the ixz means to read the input, load the cross sections, and then load the tally (or, in this case,
the cross-section) plotter. A command prompt should come up (again, X11 must be launched). Type

Xxs mb mt 1

This will load the total cross section for material 5, or polyethylene, displayed in Fig. 7. Notice that the
cross section is relatively flat in the intermediate range and then increases for thermal neutrons. Take note
of the relative magnitudes. Next, the heating number can be plotted by

Xxs mb mt -4

This shows (Fig. 8) that as energy decreases, the heating decreases proportionately until the thermal
energy range, where it has a more curved shape. Notice that the decrease is about six orders of magnitude
from 1 MeV to 1 eV (directly proportional to the neutron energy). This decrease is much larger than the
increase in the total cross section, therefore the net effect on the tally should diminish sharply with decreased
neutron energy.

In MCNP, it is possible to split or roulette based on neutron energy. This is done with the ESPLT card
with the following format

ESPLT:n R1 E1 R2 E2

Here R is the ratio of splitting (or rouletting) for neutrons scattering to below energy E. There can be
several such energies. In this case, the ratios should be less than one, implying that particles are rouletted.
Copy caas6a.txt previous input file to caas6b.txt. The energy splitting parameters will be added to
this file. There are infinitely many parameters that would work. One such set that appears to work well is
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esplt:n  0.25 1le-3 0.1 1le-6

This means that only a quarter of neutrons survive when scattering below 1 keV (with those surviving
having their weight multiplied by four), and only a tenth survive when scattering below 1 eV (the survival
weight increased by a factor of ten).

Run the problem again:

mcnp6 i = caas6b.txt o = caas6bout.txt r = caas6brun rssa = caassrc

Notice that it runs much faster now. Also note that the figure of merit in the output file has increased.
The relatively uncertainty may have increased slightly, as expected since there are fewer histories contributing
to the tally, but this appears to be offset with the reduction in time per history. The last lines of the previous
and current tally-fluctuation charts are

nps mean error vov slope fom
100429  9.1802E-06 0.2163 0.1584 2.4 22
100429  8.4930E-06 0.2363 0.2744 3.0 61

Next, in the output file search for the literal string 1dxtran. Below is information related to information
on neutrons going toward the DXTRAN spheres. The first block of information is the distribution of weights.

cumulative weight cumulative

fraction of transmitted fraction of

times average weight transmissions transmissions per history total weight
1.0000E-01 572 0.21941 2.01416E+05 0.00037
1.0000E+00 512 0.41580 5.80285E+05 0.00144
2.0000E+00 115 0.45992 6.86117E+05 0.00270
5.0000E+00 140 0.51362 1.91980E+06 0.00623
1.0000E+01 141 0.56770 4.95372E+06 0.01534
1.0000E+02 359 0.70541 5.76020E+07 0.12128
1.0000E+03 128 0.75451 1.66081E+08 0.42674
1.0000E+38 36 0.76832 3.11690E+08 1.00000

Notice that a vast majority of the weight contributing to the DXTRAN sphere are a few particles with
relative weight that is very high. Below this is information where particles are coming from and reaching
the DXTRAN sphere. This is broken into hits and misses.

cell misses hits weight per history weight per hit
1 100 935976 508 5.12376E+04 2.01784E+08
2 101 227 0 0.00000E+00 0.00000E+00
3 102 49056 101 2.34447E+04 4.64392E+08
4 200 0 21 1.05844E+08 1.00834E+13
5 201 3333 41 2.29512E+04 1.11991E+09
18 900 780108 1936 4.37772E+08 4.52380E+11

Notice that there seem to be very few tracks to the DXTRAN relatively, even in the room with the
detector itself (cell 200). The weight per hit also seems significantly higher than those coming from other
cells (1 x 103 versus contributions four to five orders of magnitude lower, on average). Note that because
of the energy dependence of the heating value and total cross section, an unusually large weight to the
DXTRAN sphere (the results of this table are energy independent) does not necessarily imply an unusually
large score to the tally, which is the real issue. Nonetheless, in this specific case, using DXTRAN hits is
indeed an appropriate proxy for the tally scores. This information, along with the results of the previous
section of the table, implies that a few collisions are contributing a vast majority to the overall score of
the tally. Considering their rarity (21 hits out of just over 1 x 10° histories) and high weight per history,
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indicating their high importance to the tally result, it is advisable to increase the frequency of these events.
This is possible using a technique called forced collisions.

When a collision is forced, MCNP decomposes the particle track into an uncollided and a collided part.
The uncollided part immediately streams to the end of the cell and transport continues. The collided part
undergoes a collision somewhere along its trajectory. The weight is partitioned according to the probability
of colliding to preserve the mean value.

Forced collisions are controlled by the FCL:n card, which is a listing of numbers for each cell similar to
NONU. Also like with NONU, FCL:n can be placed on the cell cards. The numbers can range from -1 to 1. For
here, let the numbers be either 0 for not forcing collisions, or 1 meaning to always force them.

Copy caas6b.txt to caas6c.txt. On the cell cards, insert

fcl:n=k

where k is 1 for cells 101, 200, 201, 206, and 208 and 0 elsewhere. This particular list of cells are all those
in air that have a probable chance of contributing significantly to the DXTRAN sphere.
Run the problem again, and examine the tally-fluctuation charts in the output file:

mcnp6 i = caas6c.txt o = caas6cout.txt r = caasb6crun rssa = caassrc
The previous and current are

nps mean error vov slope fom
100429  8.4930E-06 0.2363 0.2744 3.0 61
100429  7.8835E-05 0.7308 0.9728 1.8 5.7E+00

At first glance, it would appear that just based on the figure of merit alone, that forced collisions has
actually made the performance worse. This would be an incorrect conclusion, however. While the figure of
merit has fallen by over a factor of ten and the error has dramatically increased, notice that the mean value
is over a factor of ten higher. The reason for this is that collisions near the detector tend to contribute the
greatest scores, and the previous calculations did not capture enough of them to have a reliable estimate of
the mean. In other words, the tally-fluctuation chart values from the previous runs are deceptive in that they
are missing necessary portions of information. This is an example where examining the diagnostic tables
(in this case, the DXTRAN contribution table) is important for getting correct answers. Had this problem
been run out longer without forced collisions, eventually large scores would have been made that would have
significantly perturbed the mean and statistical quantities, serving as a clear warning signal. This may,
however, have taken a long time to have arisen, and apparently reliable but wrong answers (too low by a
factor of about six it turns out) may have been obtained.

Observe how the DXTRAN table changes:

cumulative weight cumulative
fraction of transmitted fraction of
times average weight transmissions transmissions per history total weight
1.0000E-01 518 0.12622 4.07586E+05 0.00036
1.0000E+00 816 0.32505 3.28519E+06 0.00327
2.0000E+00 302 0.39864 4.45321E+06 0.00722
5.0000E+00 437 0.50512 1.39421E+07 0.01958
1.0000E+01 323 0.58382 2.32619E+07 0.04021
1.0000E+02 715 0.75804 2.21272E+08 0.23638
1.0000E+03 218 0.81116 4.52133E+08 0.63724
1.0000E+38 39 0.82066 4.09170E+08 1.00000
cell misses hits weight per history weight per hit
1 100 937181 327 5.17773E+04 3.16776E+08
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2 101 22244 36 4.28249E+00 2.37987TE+05
3 102 49084 73 1.92037E+04 5.26286E+08
4 200 15 500 1.33771E+08 5.35243E+11
5 201 61724 143 3.42945E+04 4.79788E+08
18 900 857400 3014 9.93944E+08 6.59749E+11

Notice that there are now significantly more particles (500 versus 21) are contributing to the DXTRAN
sphere from cell 200, the room with the detector. The weight per hit has also decreased to be closer to those
from elsewhere, which is desirable because the goal is to minimize the disparity in weight. This strongly
supports undersampling of important tracks is the reason for the dramatic increase in the mean.

Still, however, most of the scores to the DXTRAN are for particles with very high relative weight (about
20% have a thousand times or more weight than average). The next step is to control this with weight
windows.

The weight-window game is a means to keep particle weights constrained to within a defined range. There
are lower and upper weight-window bounds, which can be a function of space and energy. When a particle
in a particular region of phase space has a weight above the upper weight-window bound, it is split to make
it within the weight window. Conversely, if the particle weight is below the lower weight-window bound,
then it is rouletted such that the surviving particles have weights within the weight window. If the particle
weight is already within the window, no action is taken.

Copy caas6c.txt to caas6d.txt. This file will serve as the starting point for developing the needed
weight windows.

Weight windows can be used in conjunction with both cells and a superimposed mesh — the latter is more
versatile, and therefore the usual method of choice. Almost always, the weight-window mesh should cover
the entire geometry. The mesh is defined with the MESH card with a set of keywords. The mesh may be either
in Cartesian, cylindrical, or spherical coordinates, and this is specified with the GEOM keyword. Here only
the Cartesian or GEOM = XYZ case will be used. The z,y, z coordinates of lower corner of the mesh must be
defined with the ORIGIN keyword. Also, a reference z,y, z point must be defined with the REF keyword. The
reference point tells MCNP which mesh element to serve as the one for normalization and is typically one
that contains source particles. Next, a coarse mesh must be defined in x, y, z using the IMESH, JMESH, KMESH
keywords. The entries are absolute coordinates to define planes forming the mesh regions. Each coarse-mesh
element may be further subdivided into some number of equally sized bins specified with the corresponding
TINTS, JINTS, KINTS keywords. The example of this used in this exercise is

mesh geom = xyz origin = -1300 -1900 -50 ref =0 0 5
imesh = -1250 -260 -250 -200 800 850 1850 1900

iints = 1 1 4 5 4 1 1 1
jmesh = -1850 -850 -800 -305 -295 200 250
jints = 1 1 1 2 1 2 1
kmesh = 0 290 300 310
kints = 1 3 1 1
The lower corner of the mesh corresponds to the lower corner of the geometry, or x = —1300 cm,
y = —1900 cm, z = —50 cm. The reference point is located inside the can of plutonium nitrate solution,

in line with keeping the weight-window values with respect to a source region. The mesh has eight coarse
intervals with x bounds defined with the IMESH keyword. Each of these is subdivided into equally-sized
intervals with the IINTS keyword, with more resolution in the regions between the source and detector and
little resolution faraway, where few neutrons are expected to contribute. This same idea is followed for the y
and z coordinates. It may be a good idea at this point to pause to understand how the superimposed mesh
corresponds with the geometry and understand why the particular choices were made. Note that this is not
the only valid choice for the mesh intervals, and almost surely not the optimal ones, but they appear to be
sufficient for the upcoming analysis.

A lower-weight window bound must be specified for each mesh element — the upper weight-window bounds
in MCNP are determined by a global multiplicative constant (typically five, but this can be changed with
the WWP card). Because the number required is usually quite large, it is unreasonable to expect a user to
understand the physics of the problem well enough to take intelligent guesses as to what those should be.
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MCNP does provide, however, a weight-window generator, which can, using statistical methods, estimate
what the lower weight-window bounds should be.

A note with using the weight-window generator with a mesh is that the mesh resolution needs to be
appropriate. First, the mesh needs to be fine enough to capture the needed gradients in importance between
regions; having too coarse a mesh may actually cause biasing so severe that performance is lower than analog.
Conversely, because Monte Carlo techniques are used to estimate the lower weight-window bounds in each
element, the tallies for each need to adequately sampled to have meaningful weight-window bounds. Going
too fine will mean that it will be too difficult for MCNP to find statistically resolved values, and either a
greater amount of time would be needed to find parameters than simply “brute forcing” the desired result,
or the results will be so erratic because of statistical noise to be useful. The previously chosen mesh took
these issues into consideration, and the mesh resolution appears to appropriately balance them.

The weight-window generator is designed to optimize lower weight-window bounds for a specific tally. It
is invoked with the WWG card with the first entry being the index of the tally to attempt the optimization
for. Other options of the weight-window generator card can be found in the MCNP Manual. In this case,
the following card is needed

wwg 6

When MCNP is run, it will automatically create new tallies for each mesh element defined by the MESH
card and compute estimates of what the lower weight-window bounds should be. These will be printed
out to a specially formatted file with the default name of wwout. This file may then be used as an input in
subsequent runs. The weight-window generator may also be run iteratively using a previously obtained set of
weight-window bounds in the hope of obtaining a more statistically resolved set. Typically, a few iterations
will need to be performed before suitable weight-window bounds can be obtained.

Now run the problem:

mcnp6 i = caas6d.txt o = caas6dout.txt r = caas6drun rssa = caassrc

Note that the problem is now taking slightly longer. This is because MCNP is performing internal
accounting to produce estimates of the weight-window bounds. The results in the output file should not
have changed, because no new biasing parameters were introduced. The figure of merit, however, will likely
be lower because of the computational penalty incurred by the weight-window generator.

As previously mentioned, MCNP produces a file called wwout that contains these estimates. Rename this
file to wwinp1, as it will be the first in a series of weight window input files. Also copy the MCNP input file
caas6d.txt to caasbe.txt.

To use the new weight-window file, the WWP:n card must be added. Specifically, the fifth parameter must
be set to -1 to indicate that the weight-window bounds are to be obtained from a file. Add the following
card to the MCNP input file

wwp:n 4j -1

Recall that the 4j means to “jump” over the first four entries, using their defaults. The fifth entry, the
parameter to tell where MCNP should obtain the weight-window bounds, is then changed to -1. A full
description of the WWP card may be obtained in the MCNP Manual.

Which file to use is done on the execution command line. This is done with the wwinp = <file> option,
where <file> is the name of the weight-window file, or wwinp1 in this case. Run the problem:

mcnp6 i = caasbe.txt o = caasbeout.txt r = caasberun rssa = caassrc wwinp = wwinpl

MCNP is now using the previously obtained set of weight-window bounds to obtain a new, and hopefully
improved set. Because of the new biasing games being played, this run takes significantly longer than before.
Upon completion, a new file called wwout is produced containing the new set of parameters; rename this file
to wwinp2.

Examining the new output file should show that uncertainty is significantly reduced. The last lines in
the two different tally-fluctuation charts are
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nps mean error vov slope fom
100429  7.8835E-05 0.7308 0.9728 1.8 5.5E+00
100429  4.9018E-05 0.2293 0.3095 1.8 3.2E+00

The DXTRAN tables are also informative:

cumulative weight cumulative
fraction of transmitted fraction of
times average weight transmissions transmissions per history total weight
1.0000E-01 93289 0.46690 1.43195E+08 0.09009
1.0000E+00 59979 0.76708 2.77016E+08 0.26437
2.0000E+00 5253 0.79337 1.20762E+08 0.34035
5.0000E+00 3830 0.81254 1.92375E+08 0.46138
1.0000E+01 1296 0.81903 1.46065E+08 0.55328
1.0000E+02 871 0.82338 3.07214E+08 0.74656
1.0000E+03 53 0.82365 1.76307E+08 0.85748
1.0000E+38 11 0.82370 2.24790E+08 0.99890
cell misses hits weight per history weight per hit
1 100 9981049 1973 7.51494E+04 7.62007E+07
2 101 314745 411 1.23567E+00 6.01482E+03
3 102 528737 378 3.17756E+04 1.68176E+08
4 200 660873 25635 1.67741E+08 1.30908E+10
5 201 882385 1316 4.21140E+04 6.40223E+07
18 900 23405644 170079 1.42156E+09 1.67215E+10

The introduction of weight control has largely reduced the number of extremely high weight contributions.
Less than 1% of the transmissions to the DXTRAN sphere have a weight a factor of a thousand greater than
average. The number of contributions from cell 200 has also increased dramatically, going from 500 to over
25000. Consequently, the weight per hit is also a factor of 40 lower and nearer the weight per hit from other
nearby regions of the problem (namely cell 900, which accounts for neutrons going from the accident through
the concrete wall).

It is desirable to iterate again to further improve the weight windows. First, copy caas6e.txt file to
caas6f.txt. Also, increasing the number of histories run will get more reliable estimates of the lower weight-
window bounds. There is a particular subtlety with doing this with a surface source, however. The average
source weight is related to the number of histories run (the NPS) and the number of tracks stored in the
surface-source file. While results of tallies are independent of the NPS chosen, the weight windows are not,
and things need to adjusted accordingly.

Doubling NPS means that the average source weight is reduced by half. The weight windows, however,
are expecting the same average source weight. This can be done if the emitted weight on the SSR card is
doubled along with NPS:

nps  2e5
ssr cel = 100 wgt = 5.8el5 psc = 0.5

Tally scores, however, will be a factor of two too high. This can be fixed by adjusting the halving the
tally multiplier:

fm6 8.0110e-11

Remember that none of this is needed in a normal, fixed-source (SDEF) problem.
Run the problem again, but with the new set of weight windows

mcnp6 i = caas6f.txt o = caas6fout.txt r = caas6frun rssa = caassrc wwinp = wwinp2
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The tally fluctuation charts show markedly improved performance. The last lines of the previous and
current runs are

nps mean error vov slope fom
100429 4.9018E-05 0.2293 0.3095 1.8 3.2E+00
199653  5.5539E-05 0.0692 0.0331 3.8 14

The entire tally fluctuation chart is

nps mean error vov slope fom
16000  7.5688E-05 0.2425 0.3509 1.7 14
32000 6.7599E-05 0.1631 0.1884 1.9 16
48000 6.4932E-05 0.1262 0.1265 1.9 18
64000 6.0339E-05 0.1094 0.1000 2.1 18
80000 6.0882E-05 0.0985 0.0718 2.4 18
96000 5.9743E-05 0.0949 0.0633 2.5 16
112000  5.7343E-05 0.0948 0.0643 2.4 14
128000 5.6485E-05 0.0876 0.0566 2.9 14
144000 5.6947E-05 0.0826 0.0482 2.9 14
160000  5.6425E-05 0.0773 0.0435 3.1 14
176000 5.6144E-05 0.0740 0.0384 3.2 14
192000 5.5828E-05 0.0710 0.0341 3.6 14
199653  5.5539E-05 0.0692 0.0331 3.8 14

The relative uncertainty is less than 10% and all statistical checks have been passed. The figure of merit is
also significantly higher, indicating that weight windows have improved the efficiency of getting the answers,
as well as their reliability. As a check, the mean is also about the same as before, and no significant jumps
are observed. Also, the slope of the PDF tail is significantly greater (now being above three) and steadily
improving. The reason this matters is that the tail of the PDF slope is related to those rare extremely high
weight contributions. As the magnitude of the score gets very large, the frequency of that score occurring
should decrease rapidly. Having a low PDF slope indicates that the tail has not been adequately resolved. In
other words, there are likely some extremely high weight contributions that have not been sampled enough.

As an aside, the reason for the choice of a PDF slope of three for the statistical check criteria is that this
is the minimum requirement for the central limit theorem being satisfied. If this condition is met, both the
mean and standard deviation (uncertainty) exist, and the relative uncertainty should decrease as the square
root of the number of histories. If this behavior is expected (which it always is in cases of interest except
for a notable exception involving F5 tallies), then the true PDF slope must fall off with at least a slope of
three, and resolving that behavior is an indicator of reliability.

In principle this calculation is finished. The tally means appear reasonable and all statistical checks are
passed. Once in a while, it is good to verify that things are well behaved with an even longer run. As
an exercise, run the problem with one million histories, remembering to adjust the source weight and tally
multiplier.

The tally-fluctuation chart of the longer run confirm what was seen in the previous case:

nps mean error vov slope fom
64000 6.0176E-05 0.1330 0.1304 1.8 12
128000  5.5487E-05 0.0918 0.0692 2.6 13
192000 5.2667E-05 0.0781 0.0522 2.5 12
256000 5.1279E-05 0.0689 0.0557 3.2 12
320000 5.1672E-05 0.0677 0.0527 3.1 9.9E+00
384000 5.1803E-05 0.0597 0.0428 3.5 11
448000 5.0410E-05 0.0544 0.0378 3.8 11
512000 5.0908E-05 0.0498 0.0311 4.1 12
576000  4.9349E-05 0.0465 0.0290 4.2 12
640000 4.9371E-05 0.0435 0.0252 4.5 12
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704000 5.0017E-05 0.0415 0.0217 4.5 12
768000 5.0807E-05 0.0398 0.0192 4.3 12
832000 5.1213E-05 0.0380 0.0174 4.0 12
896000 5.1107E-05 0.0363 0.0158 4.2 12
960000 5.1281E-05 0.0350 0.0145 4.5 12
1000571 5.0766E-05 0.0341 0.0142 4.6 13

It turns out that with application of variance reduction techniques (DXTRAN, energy cutoffs, forced
collisions, and weight windows), this problem is quite easy to solve. Getting results for detectors further
away is more difficult, and will require better attention to variance reduction parameters including the weight-
window mesh resolution, and probably just running more histories. The variance reduction techniques just
discussed, however, should mostly be sufficient to solve this type of problem.
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Figure 7: Exercise 6: Total neutron cross section of polyethylene.
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Figure 8: Exercise 6: Neutron heating of polyethylene.
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Exercise 7: Facility Doses to Personnel

In addition to the alarm system design, another consideration is estimating the doses delivered to personnel as
a consequence of a criticality accident. These can be important for the development of evacuation procedures
and emergency response activities. MCNP6 can compute flux or dose maps on a spatially resolved mesh.
This exercise details how to set up a flux mesh and how to apply dose response functions D(F) to get the
energy absorbed by tissue.

For now, these exercises have focused explicitly on neutrons only. For dose calculations, neutrons will
likely contribute most of the dose, but gamma doses may not be negligible. Since gammas are also generated
from fission, this means that the surface-source file will need to be regenerated.

Copy the file caas3.txt to caas7a.txt. To add photons to the eigenvalue calculation, the MODE card
must be used. The format is the card name followed by a list of characters denoting the particle types to
be used. The default is neutrons only, for which the symbol is n. The symbol for gammas or photons is p.
Insert the following card into the new file:

mode n p

The surface-source write or SSW card does not need to be changed. There is an optional argument called
PTY, which can be used to list the particle types that need to be recorded. The default is to record everything.
To be explicit, the following could be used but is not necessary:

ssw cel = 100

pty =np
Run the problem with the surface-source file name of caas7src:

mcnp6 i = caas7a.txt o = caas7aout.txt r = caas7arun wssa = caas7src
The problem should take longer than before because MCNP is tracking photons during the active cycles.

At the end of the problem, the following line should appear on the screen:

surface-source file caas7src written with 3798013 tracks.

About 3.8 million tracks have been written to the file, up from the about 2 million neutron histories run.
This is because the fission gammas produced are also stored in the file in addition to the neutrons.

Next, copy the file caas4.txt to caas7b.txt. Modify the MODE card to include photons. Note that this
file should contain the nonu=0 on the cell cards, which must be changed to nonu=2 This implies that neither
fission neutrons nor fission gammas will not be produced, as they are already encountered in the source.
Photons produced from neutron capture or inelastic scattering are still emitted, however.

Run this problem with 1 x 10° histories:

mcnp6 i = caas7b.txt o = caas7bout.txt r = caas7brun rssa = caas7src
Examine the neutron and photon creation tables in the output file:
neutron creation tracks weight energy neutron loss tracks weight energy
(per source particle) (per source particle)

source 100433 2.9105E+15 2.1048E+00 escape 13615 3.1943E+14 7.5768E-02
nucl. interaction 0 0. 0. energy cutoff 0 0. 0
particle decay 0 0. 0. time cutoff 0 0. 0

weight window 0 0. 0. weight window 0 0. 0

cell importance 0 0. 0. cell importance 0 0. 0.

weight cutoff 0 1.8468E+14 2.4325E-07 weight cutoff 86821 1.8577E+14 8.6359E-05
e or t importance 0 0. 0. e or t importance 0 0. 0.

dxtran 0 0. 0. dxtran 0 0. 0.

forced collisions 0 0. 0. forced collisions 0 0. 0

exp. transform 0 0. 0. exp. transform 0 0. 0.
upscattering 0 0. 1.2348E-07 downscattering 0 0. 1.9664E+00
photonuclear 0 0. 0. capture 0 1.5556E+15 5.4491E-02
(n,xn) 6 1.2898E+11 4.0087E-05 loss to (n,xn) 3 6.4492E+10 2.1743E-04
prompt fission 0 0. 0. loss to fission 0 1.0345E+15 7.8795E-03
delayed fission 0 0. 0. nucl. interaction 0 0. 0

prompt photofis 0 0. 0. particle decay 0 0. 0
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tabular boundary 0 0. 0. tabular boundary 0 0. 0.
tabular sampling 0 0. 0. elastic scatter 0 0. 0.
total 100439 3.0953E+15 2.1048E+00 total 100439 3.0953E+15 2.1048E+00
number of neutrons banked 3 average time of (shakes) cutoffs
neutron tracks per source particle 5.0186E-02 escape 5.7382E+04 tco 1.0000E+33
neutron collisions per source particle 2.9970E+00 capture 7.3138E+04 eco 0.0000E+00
total neutron collisions 5997993 capture or escape 7.0453E+04 wcl -5.0000E-01
net multiplication 1.0000E+00 0.0000 any termination  5.7821E+04 wc2 -2.5000E-01
photon creation tracks weight energy photon loss tracks weight energy
(per source particle) (per source particle)
source 89997 7.9409E+15 8.6851E-01 escape 12702 7.1632E+14 1.0556E-01
nucl. interaction 0 0 0. energy cutoff 0 0. 8.3789E-05
particle decay 0 0 0 time cutoff 0 0. 0.
weight window 0 0 0 weight window 0 0. 0.
cell importance 0 0 0 cell importance 0 0. 0.
weight cutoff 0 0 0 weight cutoff 0 0. 0.
e or t importance 0 0 0 e or t importance 0 0. 0.
dxtran 0 0 0 dxtran 0 0. 0.
forced collisions 0 0 0 forced collisions 0 0. 0.
exp. transform 0 0. 0. exp. transform 0 0. 0.
from neutrons 93800 4.347TE+15 1.2200E+00 compton scatter 0 0. 1.6561E+00
bremsstrahlung 56944 2.9505E+15 2.5418E-02 capture 331099 2.2237E+16 2.8010E-01
p-annihilation 12824 5.4425E+14 3.5023E-02 pair production 6412 2.7212E+14 1.5504E-01
photonuclear 0 0 0. photonuclear abs 0 0. 0.
electron x-rays 0 0 0 loss to photofis 0 0. 0.
compton fluores 0 0 0
muon capt fluores 0 0. 0.
1st fluorescence 83196 6.3204E+15 4.5743E-02
2nd fluorescence 13452 1.1218E+15 2.2097E-03
(gamma , xgamma) 0 0 0
tabular sampling 0 0 0
prompt photofis 0 0. 0.
total 350213 2.3226E+16 2.1969E+00 total 350213 2.3226E+16 2.1969E+00
number of photons banked 267017 average time of (shakes) cutoffs
photon tracks per source particle 1.7499E-01 escape 4.3518E+04 tco 1.0000E+33
photon collisions per source particle 7.3072E-01 capture 1.5038E+04 eco 1.0000E-03
total photon collisions 1462411 capture or escape 1.5927E+04 wcl -5.0000E-01
any termination  1.6459E+04 wc2 -2.5000E-01

For each neutron emitted in the simulation, about 0.9 photons are emitted from the source. The weight
of photon source particles, however, is about 2.73 times higher than neutron sources. This implies that about
2.44 photons are emitted per neutron emitted from fission. Multiplying by about 2.9 neutrons per fission,
this would imply that just over 7 photons are emitted per fission.

Additional photons are produced as secondaries from neutron collisions in this simulation, with many
more coming from other photon-electron induced physical processes (e.g., bresstrahlung). Note that MCNP6
is not explicitly tracking electrons in this simulation — doing so would slow the simulation down by orders
of magnitude. To produce x-rays from bresstrahlung, MCNP6 uses the thick-target approximation, which
preserves the mean number of bresstrahlung photons produced, but only at the point of the photoatomic
collision. Photonuclear effects (e.g., neutrons produced from high-energy photon collisions) are neglected. It
would be possible to include this effect with the PHYS:P card, but they should be negligible for this type of
problem.

Copy caas7b.txt to caas7c.txt. Next the neutron and photon mesh tallies will be added. First, it is
important to decide the resolution of the mesh. For this, using a 50 cm x 50 cm mesh in the z — y direction
extending from floor to ceiling seems appropriate.

The are done by way of the FMESH cards. The format is very similar to the MESH card, except that there
is no REF keyword needed. The following FMESH cards should be inserted:

c ### mesh tallies
¢ neutron mesh tally
fmesh104:n geom = xyz origin = -1300 -1900 O

imesh = 1900 iints = 64
jmesh = 250  jints = 43
kmesh = 300 kints =1

c photon mesh tally
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fmesh204:p geom = xyz origin = -1300 -1900 O

imesh = 1900 iints = 64
jmesh = 250  jints = 43
kmesh = 300 kints = 1

If this calculation is run, neutron and photon fluxes averaged over each mesh element will be produced.
This is not, however, the answer that is desired. To get the dose (in Gy), dose functions need to applied
with DE and DF cards. These specify energy-dependent tally multipliers that use either linear or logarithmic
interpolation. The cards are:

c ### fluence to dose (particles/cm™2 to Gy) kerma response factors
Cc neutrons

¢ J. Shultis, R. Faw, "Radiation Shielding" p. 477

c selected values from Table D.8 (use larger set for actual calculations)

de104 log 2.00e-06 2.00e-05 2.00e-04 2.00e-03 2.00e-02 2.00e-01
1.00e+00 2.00e+00 3.03e+00 3.99e+00 5.02e+00 7.60e+00
1.00e+01 1.21e+01 1.45e+01 2.00e+01

df104 log 2.33e-14 9.32e-15 2.26e-14 2.01e-13 1.81le-12 9.88e-12
2.53e-11 3.03e-11 3.58e-11 4.10e-11 4.56e-11 5.25e-11
5.72e-11 6.14e-11 6.60e-11 7.35e-11

c photons

c ANSI/ANS-6.1.1 1977

de204 log 1.00e-02 3.00e-02 5.00e-02 7.00e-02 1.00e-01 1.50e-01
2.00e-01 2.50e-01 3.00e-01 3.50e-01 4.00e-01 4.50e-01
5.00e-01 5.50e-01 6.00e-01 6.50e-01 7.00e-01 8.00e-01
1.00e+00 1.40e+00 1.80e+00 2.20e+00 2.60e+00 2.80e+00
3.25e+00 3.75e+00 4.25e+00 4.75e+00 5.00e+00 5.25e+00
5.75e+00 5.75e+00 6.25e+00 6.75e+00 7.50e+00 9.00e+00
1.10e+01 1.30e+01 1.30e+01 1.50e+01

df204 log 1.10e-11 1.62e-12 8.06e-13 7.17e-13 7.86e-13 1.05e-12
1.39e-12 1.75e-12 2.11e-12 2.44e-12 2.74e-12 3.00e-12
3.25e-12 3.53e-12 3.78e-12 4.00e-12 4.22e-12 4.67e-12
5.50e-12 6.97e-12 8.31e-12 9.50e-12 1.06e-11 1.11le-11
1.23e-11 1.34e-11 1.45e-11 1.56e-11 1.61le-11 1.67e-11
1.77e-11 1.87e-11 1.98e-11 2.13e-11 2.44e-11 2.86e-11
3.28e-11 3.69e-11

The mesh tally results will be printed to a text file with a default file name of meshtal. Like with other
options, this can be changed on the execution line. Run the problem

mcnp6 i = caas7c.txt o = caas7cout.txt r = caas7crun meshtal = caas7cmesh rssa = caas7src

Once the problem completes, it would be useful to visualize the results. This can be done in the tally
plotter. On the execute line, type

mcnp6 z r = caas7crun
MCNP6 will load the runtpe file. On the command prompt, type
fmesh 104

This will load the geometry plotter and display tally 104, the neutron mesh tally. Click on the window
to see the results. These are displayed in Fig. 9. It should be readily apparent that while the dose in the
room with the accident is well-resolved, the doses in the other rooms are not. The appearance of colored
streaks are clear signs of poor sampling, and they are in abundance.
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The plotter may also plot the relative uncertainties. Click on the box in bottom-left corner of the
geometry plotter and type fmrelerr. A plot of the relative uncertainty should appear. This is displayed in
Fig. 10. Note that except for the region immediately around the source, the relative uncertainties are very
high.

A plot of the photon tally may be brought up by clicking on the same box and typing fmesh 204. This
brings up the photon plot, which looks similar to the neutron one. The relative uncertainty may also be
likewise plotted. After doing this, close the plotter.

At this point, the only real viable option currently in MCNP6 is to run many, many more particles.
While some variance reduction techniques may be tried, there is currently no automatic way to generate
variance reduction parameters (e.g., weight windows) for a mesh tally. This is a topic of future research and
development in MCNPG6.
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Figure 9: Exercise 7: Neutron dose (in Gy) mesh tally.
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Figure 10: Exercise 7: Relative uncertainties of neutron dose mesh tally.
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