Semi-Analytical Benchmarks for MCNP6

Pavel Grechanuk\(^1\), **Michael E. Rising**\(^2\), Forrest B. Brown\(^2\) and Todd S. Palmer\(^1\)

\(^1\)Nuclear Engineering and Radiation Health Physics Department
Oregon State University

\(^2\)Monte Carlo Algorithms, Codes and Applications
Los Alamos National Laboratory

2017 ANS Annual Meeting
San Francisco, CA

June 14, 2017
Outline

• Introduction

• Background
 • Verification & validation
 • MCNP history of V&V
 • Semi-analytic benchmarks

• Numerical Results
 • Comparison of semi-analytic to MCNP
 • Tips for proper comparison

• Conclusions & Future Work
Introduction

• The neutron Boltzmann transport equation is complicated
 • There are many forms of this equation
 • And there are many ways to solve it

• Should you assume the “black box” just works?
 No.

• There should be some way to prove that the computer code works as expected…
Background
Verification and Validation

- In the context of radiation transport codes

- **Verification**
 - Proof that the transport codes actually solve the transport equation
 - Code-to-analytical comparison

- **Validation**
 - Proof that the transport codes actually reflect what happens in nature
 - Code-to-experimental comparison

- **This presentation will focus only on recent verification efforts**
Background
MCNP History of V&V

• **MCNP verification suites (and recent efforts*)**
 • Kobayashi
 • Fixed-source
 • Multi-dimensional problems
 • Verification Criticality
 • k-eigenvalue problems
 • Few group problems, simplified physics
 • Gonzales*
 • Heavy gas model
 • Includes free-gas scattering
• **MCNP validation suites**
 • Validation Criticality + Expanded
 • Validation Shielding
 • Validation Electron / Photon*
• **Others**

V&V reports for criticality safety applications are regularly issued from MCNP developers with continued support from the DOE NCSP
Background
Semi-Analytic Benchmarks

• “New” benchmarks come from Professor Barry Ganapol’s book, *Analytical Benchmarks for Nuclear Engineering Applications*

• Sections
 • Neutron slowing down and thermalization
 • One-group neutron transport in one-dimension
 • Infinite medium (3.1)
 • Infinite half-space (3.2)
 • Finite slab (3.3)
 • Infinite cylinder (3.4)
 • One-dimensional multigroup neutron transport
 • Multidimensional neutron transport in semi-infinite and infinite media

• Semi-analytic solutions compared to MCNP
Numerical Results
Comparison of Semi-Analytic to MCNP
Benchmark 3.1

Benchmark 3.1.2
Isotropic Source at x=0

- MCNP c=1
- Analytical Solution c=1
- MCNP c=9
- Analytical Solution c=9

Scalar Flux vs. Position in Slab (cm)
Numerical Results
Comparison of Semi-Analytic to MCNP Benchmark 3.1

Benchmark 3.1.2
Isotropic Source at x=0
Numerical Results
Comparison of Semi-Analytic to MCNP Benchmark 3.2

Benchmark 3.2.2(a)
Beam Source at x=0

Scalar Flux

Position in Slab (cm)
Numerical Results
Comparison of Semi-Analytic to MCNP Benchmark 3.2
Numerical Results
Comparison of Semi-Analytic to MCNP Benchmark 3.3
Numerical Results
Comparison of Semi-Analytic to MCNP
Benchmark 3.3
Numerical Results

• What is going on?

• When comparing the semi-analytical solutions to the MCNP simulations, the F2 surface flux tally can be used
 • Provides the solution at a point for one-dimensional problems making it easy to compare with the semi-analytic benchmark solutions
 • F2 type tallies have assumptions to maintain finite variance

\[
\phi = \frac{1}{A \ast W} \sum \frac{wgt}{|\mu|}
\]

• For MCNP6.1 and 6.1.1, below $|\mu|<0.1$ the F2 tally makes constant flux approximation in this “grazing angle” range
• For MCNP6.2, below $|\mu|<0.001$ is the new default “grazing angle” cutoff, and the user may now define a preferred cutoff value
Numerical Results

- Improved solutions

- New grazing angle cutoff

Benchmark 3.1.2

- Use F4 type volume tally (no assumptions)

- Errors due to F2-type tally assumptions
Numerical Results
Comparison of Semi-Analytic to MCNP Benchmark 3.4
Numerical Results
Comparison of Semi-Analytic to MCNP Benchmark 3.4

Benchmark 3.4.2
Uniform Volume Source & Fission

- MCNP $c=1.5$, $R=1.178$
- MCNP $c=1.3$, $R=1.725$
Numerical Results

Tips for Proper Comparisons

• **Remember F2 tallies have assumptions**
 - To maintain finite variance in flux tally
 - Small grazing angles can cause discrepancies

• **Use F4 or FMESH tallies for cell/volume-based track-length flux tallies**
 - No assumptions
 - Comparison to point-wise solutions is difficult

• **Use lower grazing angle threshold to minimize discrepancies**
 - MCNP6.2 includes lower default grazing angle cutoff ($|\mu|<0.001$)
 - User can define cutoff value from input file
Conclusions & Future Work

Conclusions

• **MCNP6 appears to correctly calculate these semi-analytic benchmarks**
 • Continuous energy and multigroup cross sections give same results
 • For improved accuracy when comparing solutions using the F2 flux tally
 • Using small grazing angle cutoff (now default in MCNP6.2)
 • Using cell/volume-based tallies

Future Work

• **Implement more of Ganapol’s benchmarks**
 • Slowing down, multigroup, and multidimensions
• **Create and release a new verification suite**
Acknowledgements

Thanks to Professor Barry D. Ganapol for his gracious help in understanding his benchmark textbook!

This work was supported by the DOE Nuclear Criticality Safety Program, funded and managed by the National Nuclear Security Administration for the Department of Energy.
Thank you!

Contact Info:
Michael E. Rising
mrising@lanl.gov