Investigation of Clustering in MCNP6 Monte Carlo Criticality Calculations

Forrest Brown

Monte Carlo Methods, Codes, & Applications (XCP-3) X Computational Physics Division
Introduction

• Monte Carlo
 – Simulate particle behavior
 – Tally event occurrences to estimate physical results
 – Must have enough particles to cover phase space of the problem

• The undersampling problem
 – Not enough particles to cover phase space
 – All MC results are questionable, possibly wrong
 – How can you diagnose the absence of coverage?
 – The cure: Run more particles in the simulation
 – Questions: How many? How do you know it's enough?

• Clustering
 – For criticality problems
 • Iterations using next-generation fission source
 • Convergence assessment depends on fission source coverage
 – In some problems, repeated iterations lead to clustering
Sutton’s Model Problem & Shannon Entropy
Sutton’s Model Problem

- **Recent references**
 - T.M. Sutton & A. Mittal, “Neutron Clustering in Monte Carlo Iterated-Source Calculations”, ANS MCD 2017, Jeju, S. Korea, April 16-20, 2017

- **Model problem for clustering investigations**
 - Homogeneous box
 - 400 x 400 x 400 cm³
 - reflecting boundary conditions
 - One-speed: \(\Sigma_T = 1.0, \Sigma_S = 0.6, \Sigma_C = 0.2, \Sigma_F = 0.2, \nu = 2.4, f(\mu) = \frac{1}{2} \)

- **Exact solution**: uniform distribution of fission sites throughout volume of box
 - Start with initial source guess = exact solution, uniform in volume
 - Shannon entropy for exact uniform source distribution: \(H_{\text{exact}} = \log_2(N_S) \), where \(N_S \) is the number of grid-cells in Shannon entropy mesh

 - For a 10 x 10 x 10 Shannon entropy mesh, \(H_{\text{exact}} = \log_2(100) = 9.966 \)

 - Can compare actual \(H_{\text{src}} \) for calculations that vary some of the problem parameters to \(H_{\text{exact}} \), as an indicator of clustering in this model problem
Clustering vs Neutrons/cycle

1000 neutrons/cycle

10,000 neutrons/cycle

100,000 neutrons/cycle

Cycle 1 Cycle 1000 Cycle 2000 Cycle 3000 Cycle 4000
Clustering and Shannon Entropy

- **Shannon entropy vs cycle**

 - For this model problem (running 5000 cycles)
 - Visual inspection of plots of fission source points
 - MCNP determination of H_{ave} for the last half of the problem

 \[
 H_{ave} < 0.7 \, H_{exact} \quad \text{corresponds to severe clustering}
 \]
 \[
 H_{ave} > 0.7 \, H_{exact} \quad \text{corresponds to some or no clustering}
 \]
H vs Varying Parameters

Higher density
Larger size ➜ lower H, more clustering
Small neuts/cycle Smaller mfp

Note that cases with same ρL or same mfp/L have identical clustering
That is, 2*ρ and .5*L (or .5*mfp and .5*L) does not change clustering
(Remember that this is an infinite medium, no leakage)
A Simple Physical Approach

• For the original problem
 – $\lambda = 1.00$ cm
 – $l_F = 2.23$ cm, RMS distance from birth to fission site (from mcnp6)
 – $L = 400$ cm

 – So,
 If a single neutron “covers” a volume $(4\pi/3 \cdot l_F^3)$, and for this problem total volume = L^3

max coverage for

 1,000 neuts \sim 0.073% of volume - severe clustering
 10,000 neuts \sim 0.73% of volume - some clustering
 100,000 neuts \sim 7.3% of volume - no clustering

define $f_H^{\text{max}} = \text{max fraction of H volume covered, } N \cdot (4\pi/3 \cdot l_F^3)/V_H$

(assumes no overlap of spheres, so can be >100%)
Clustering and Shannon Entropy (more)

- **Shannon entropy**
 - Used to diagnose convergence of iterated fission source
 - Superimpose coarse mesh, \(N_S = m \times m \times m \) bins
 - For each iteration, tally \(N \) fission neutrons in bins
 - Normalize to get \(\{ p_k, \; k=1,\ldots,N_S \} \), coarse global PDF
 - Then,
 \[
 H = - \sum p_k \log_2(p_k), \quad \text{note: } 0 \log_2(0) = 0
 \]
 Uniform particle distribution \(\Rightarrow \max H: \quad H_{\max} = \log_2(N_S) \)
 All neutrons at same point \(\Rightarrow \min H: \quad H_{\min} = 0 \)

- Plot \(H \) vs cycle, converged when \(H \) is asymptotically constant

 - **Fundamental assumption:**
 \(N >> N_s \), enough neutrons to get reliable \(p_k \) tallies

- **Clustering reduces the computed Shannon entropy**
 - If \(N \) is small, coverage is not sufficient for reliable \(p_k \) tallies
 - If \(N \sim N_s \) or \(N < N_s \), \(H_{\max} = \log_2(N) \), wrong!
Clustering and Shannon Entropy (more)

• **Shannon entropy**
 \[H = - \text{Sum} \ p_k \log_2(p_k), \]
 note: \(0 \log_2(0) = 0 \)

 – For \(N_S = m \times m \times m \) bins, and \(N \) neutrons
 • Uniform particle distribution: \(H_{\text{max}} = \log_2(N_S) \)
 • All neutrons at same point: \(H_{\text{min}} = 0 \)

• **Simple example**
 – \(10 \times 10 \times 10 \) mesh, \(N_S = 1000 \)
 – For \(N = 1,000 \) neutrons

 | Clusters/Neutrons | H | Clusters |
 |-------------------|----|----------|
 | 1 neutron/bin, uniform | 9.97 | 500 clusters of 2 |
 | 2 neutrons/bin, 0 in others | 8.97 | 250 clusters of 4 |
 | 4 neutrons/bin, 0 in others | 7.97 | 125 clusters of 8 |
 | 8 neutrons/bin, 0 in others | 6.97 | 8 clusters of 125 |
 | 125 neutrons/bin, 0 in others | 3.00 | 4 clusters of 250 |
 | 250 neutrons/bin, 0 in others | 2.00 | 2 clusters of 500 |
 | 500 neutrons/bin, 0 in others | 1.00 | 1 cluster of 1000 |
 | 1000 neutrons/bin, 0 in others | 0.00 | |

 – Clustering reduces the computed Shannon entropy
Clustering and Shannon Entropy (more)

- **Shannon entropy & clustering**
 - Clustering leads to erroneously small asymptotic H, but how do you diagnose that if you don't know H_{exact}?
 - Clustering leads to jagged, gross variations in asymptotic H, which can be observed

- **Remember the EG-Source-Convergence problem?**
Cluster Analysis, Using DBSCAN

• There are many algorithms for identifying clusters
 – Used in image processing, etc.
 – A simple & useful algorithm is DBSCAN (density-based scan)

DBSCAN applied to original problem, with 1000 n/cycle

View from top

4 clusters (in 3D)

Need to choose 2 parameters, eps & minpts

It is not clear how useful the cluster analysis is

****> File mcretp = 10
 npt = 10
 x range: 0.00000000000000E+00 400.000000000000
 y range: 0.00000000000000E+00 400.000000000000
 z range: 0.00000000000000E+00 400.000000000000
 eps = 25.000000000000
 minpts = 4
 npts = 968

clus = 4
counts for each cluster:
1 2 25
2 2 267
3 3 94
4 4 378
outliers: 4
A Real Problem

--

ICSBEP
pu-sol-therm-012-13
Pu-sol-therm-012 Case 13

PU-SOL-THERM-012

Criticality of plutonium nitrate solution
In a large water-reflected cubic tank

(130 x 130 x 67.46 cm) (19% 240Pu)

C Pu(NO$_3$)$_4$ Solution
C 13.2 gPu/cc total
C atoms= 1.00306E-01
C
M1 94239 2.47132E-05
 94240 6.26195E-06
 94241 1.85624E-06
 94242 3.74965E-07
 95241 2.01156E-07
 7014 1.37165E-03
 8016 3.53011E-02
 1001 6.35948E-02
 26000 3.55846E-06
 24000 1.14431E-06
 28000 8.11038E-07

5 sides water reflected experimental configuration
Pu-sol-therm-012 Case 13

- Examine source points in fissile solution
- No clustering is evident, even with only 1,000 neutrons/cycle

1000 neutrons/cycle

RMS distance between fissions, \(\ell_F = 13.1 \) cm
Max coverage of \(H_{src} \) volume, \(f_{H_{max}} = 814 \% \)
Fraction of \(H_{src} \) volume with fission, \(f_H = 42 \% \)
\(\ell_F / \text{mean chord length}, \ell_F / \ell_{geom} = 20 \% \)

cycles to coalesce to 1 chain = 1228
Sutton’s Model Problem
Using Solution from
pu-sol-therm-012-13
Model Problem, with pu-sol-therm-012-13 Solution

- **Model problem for clustering investigations**
 - Homogeneous box
 - 400 x 400 x 400 cm3
 - reflecting boundary conditions
 - Material: *fissile solution from pu-sol-therm-012-13*

- **Note that the volume is ~56x larger than pu-sol-therm-012-13**

- **Vary the solution density, 0.01 – 0.25 atoms/cm3, nominal = 0.10 atoms/cm$^3***
 - note that density variation ~ size variation (L)
Clustering vs Density (1,000 neuts/cycle)

Density = 0.01
\[\ell_F = 114.5 \text{ cm} \]
\[f_{H_{\text{max}}} = 10608\% \]
\[f_{H} = 55.2\% \]
\[\ell_F / \ell_{\text{geom}} = 44.1\% \]

Density = 0.05
\[\ell_F = 26.9 \text{ cm} \]
\[f_{H_{\text{max}}} = 127\% \]
\[f_{H} = 35.9\% \]
\[\ell_F / \ell_{\text{geom}} = 10.1\% \]

Density = 0.10
\[\ell_F = 13.7 \text{ cm} \]
\[f_{H_{\text{max}}} = 16.7\% \]
\[f_{H} = 22.9\% \]
\[\ell_F / \ell_{\text{geom}} = 5.1\% \]

Density = 0.25
\[\ell_F = 5.5 \text{ cm} \]
\[f_{H_{\text{max}}} = 1.1\% \]
\[f_{H} = 8.8\% \]
\[\ell_F / \ell_{\text{geom}} = 2.1\% \]
A Real Problem
--
PWR core
Investigation of Clustering in MCNP6 MC Calculations

PWR2D – Realistic PWR Detailed Model

Nakagawa & Mori model of 2D PWR, realistic

- 50,952 fuel pins with cladding
- 4,825 water tubes for rods or detectors

Each assembly:
- Explicit fuel pins & rod channels
- 17 x 17 lattice of pins in each assembly
- Enrichments: 2.1%, 2.6%, 3.1%

- ENDF/B-VII.1 nuclear data
- Usually run with 100k neuts/cycle
- For 3D whole-core, reactor was chosen to be 100 cm high, with water above & below

Plot of ¼ of the model

2.1% enrichment
2.6% enrichment
3.1% enrichment
PWR2D – Clustering vs Neutrons/cycle

Whole-core, with fuel in 100 cm axial, 324 x 324 x 100

Usually run with 100k neuts/cycle

no clustering in routine calculations

- $\ell_F = 19.1$ cm
- $f_{\text{max}} = 14\%$
- $f_H = 1\%$

Cycles to coalesce to 1 chain $= 65$

- $\ell_F = 19.1$ cm
- $f_{\text{max}} = 28\%$
- $f_H = 2\%$

Cycles to coalesce to 1 chain $= 91$

- $\ell_F = 19.1$ cm
- $f_{\text{max}} = 139\%$
- $f_H = 10\%$

Cycles to coalesce to 1 chain $= 1061$

- $\ell_F = 19.1$ cm
- $f_{\text{max}} = 277\%$
- $f_H = 18\%$

Cycles to coalesce to 1 chain $= 696$

- $\ell_F = 19.1$ cm
- $f_{\text{max}} = 2775\%$
- $f_H = 74\%$

Cycles to coalesce to 1 chain $= \gg 4000$

50 neutrons/cycle

100 neutrons/cycle

500 neutrons/cycle

1,000 neutrons/cycle

10,000 neutrons/cycle

Cycle 1000

Cycle 2000

Cycle 3000

Cycle 4000
Bias in K_{eff} - for 2D $\frac{1}{4}$-core, from LA-UR-09-05623

$M = \text{neutrons/cycle}$

$N = \# \text{cycles}$

$N \cdot M = \text{constant for all calculations}$

$\Delta k = 0.003$
Bias in Tallies - for 2D ¼-core, from LA-UR-09-05623

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>-0.5</th>
<th>-0.6</th>
<th>0.2</th>
<th>-0.3</th>
<th>0.5</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.0</td>
<td>0.3</td>
<td>0.7</td>
<td>1.0</td>
<td>1.3</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>-0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.8</td>
<td>1.1</td>
<td>1.2</td>
<td>1.3</td>
<td>2.4</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.0</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.7</td>
<td>0.6</td>
<td>1.4</td>
<td>2.0</td>
</tr>
<tr>
<td>-0.7</td>
<td>-0.4</td>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
<td>1.0</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>-0.6</td>
<td>-0.3</td>
<td>-0.7</td>
<td>0.3</td>
<td>0.8</td>
<td>1.1</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>-0.5</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-0.5</td>
<td>0.2</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>-0.5</td>
<td>-0.9</td>
<td>-0.8</td>
<td>-1.0</td>
<td>-0.6</td>
<td>0.2</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>-0.9</td>
<td>-0.9</td>
<td>-1.1</td>
<td>-1.0</td>
<td>-0.9</td>
<td>-0.1</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>-1.2</td>
<td>-1.3</td>
<td>-1.2</td>
<td>-1.0</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>-1.3</td>
<td>-1.5</td>
<td>-1.0</td>
<td>-0.9</td>
<td>-0.7</td>
<td>-0.5</td>
<td>-0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>-1.7</td>
<td>-1.5</td>
<td>-1.1</td>
<td>-1.1</td>
<td>-0.6</td>
<td>-0.5</td>
<td>-0.2</td>
<td>-0.1</td>
</tr>
<tr>
<td>-1.5</td>
<td>-1.5</td>
<td>-1.4</td>
<td>-1.0</td>
<td>-1.1</td>
<td>-0.8</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>-1.6</td>
<td>-1.6</td>
<td>-1.2</td>
<td>-1.2</td>
<td>-0.6</td>
<td>-0.7</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Percent errors in 1/4-assembly fission rates using 500 neutrons/cycle

Errors of -1.7% to +3.2%

Statistics ~ .1% to .3%

Reference: ensemble-average of 25 independent calculations, with 25 M neutrons each & 20K neutrons/cycle
Bias in Tallies - for 2D ¼-core, from LA-UR-09-05623

Percent error in fission rates along diagonal

\[M = \text{neutrons/cycle} \]
\[N = \# \text{cycles} \]
\[N \cdot M = \text{constant for all calculations} \]
Bias in σ's - for 2D $\frac{1}{4}$-core, from LA-UR-09-05623

<table>
<thead>
<tr>
<th></th>
<th>3.4</th>
<th>3.1</th>
<th>2.7</th>
<th>3.7</th>
<th>2.6</th>
<th>2.3</th>
<th>2.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>3.7</td>
<td>3.6</td>
<td>3.7</td>
<td>3.7</td>
<td>2.7</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>3.9</td>
<td>4.0</td>
<td>3.6</td>
<td>3.3</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>3.8</td>
<td>3.8</td>
<td>4.2</td>
<td>3.3</td>
<td>3.5</td>
<td>3.4</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>3.9</td>
<td>3.6</td>
<td>3.5</td>
<td>3.3</td>
<td>3.4</td>
<td>3.4</td>
<td>4.0</td>
<td>3.9</td>
</tr>
<tr>
<td>4.1</td>
<td>3.8</td>
<td>3.5</td>
<td>3.2</td>
<td>2.9</td>
<td>2.6</td>
<td>2.9</td>
<td>3.2</td>
</tr>
<tr>
<td>3.4</td>
<td>3.4</td>
<td>3.2</td>
<td>3.5</td>
<td>2.6</td>
<td>2.4</td>
<td>2.6</td>
<td>3.0</td>
</tr>
<tr>
<td>4.2</td>
<td>3.5</td>
<td>3.4</td>
<td>3.1</td>
<td>2.7</td>
<td>2.3</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>3.9</td>
<td>3.6</td>
<td>3.1</td>
<td>2.9</td>
<td>2.3</td>
<td>1.9</td>
<td>1.9</td>
<td>2.3</td>
</tr>
<tr>
<td>3.7</td>
<td>3.3</td>
<td>3.6</td>
<td>2.4</td>
<td>2.2</td>
<td>2.2</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>3.0</td>
<td>3.1</td>
<td>3.0</td>
<td>2.2</td>
<td>2.2</td>
<td>2.1</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>2.9</td>
<td>3.7</td>
<td>3.3</td>
<td>2.6</td>
<td>2.5</td>
<td>2.8</td>
<td>3.0</td>
<td>2.9</td>
</tr>
<tr>
<td>3.2</td>
<td>3.1</td>
<td>2.9</td>
<td>3.1</td>
<td>3.2</td>
<td>3.3</td>
<td>3.5</td>
<td>5.6</td>
</tr>
<tr>
<td>3.4</td>
<td>3.0</td>
<td>3.1</td>
<td>3.6</td>
<td>3.4</td>
<td>3.5</td>
<td>3.9</td>
<td>3.7</td>
</tr>
<tr>
<td>3.5</td>
<td>3.2</td>
<td>2.8</td>
<td>3.5</td>
<td>3.8</td>
<td>3.9</td>
<td>3.9</td>
<td>4.1</td>
</tr>
</tbody>
</table>

True relative errors in 1/4-assembly fission rates, as multiples of calculated relative errors, $\sigma_{\text{TRUE}} / \sigma_{\text{MCNP}}$

Calculated uncertainties are 1.7 to 4.7 times smaller than true uncertainties

Average factor = 3.1
Conclusions, Comments, Suggestions
Conclusions, Comments, Suggestions

• For most practical problems, clustering is not a concern
 – Most problems today: 10k, 100k, or more neutrons/cycle
 • mcnp6.2 will issue warning message if < 10k neuts/cycle
 – For large reactors, it is routine to run very large neuts/cycle, to get more efficient performance on parallel clusters

• For large solution tanks, clustering is a concern
 – Crit-safety practioners will probably not run 100k or 1M neuts/cycle
 – There are some very, very large solution tanks (with very low Keff)
 – But fortunately, Keff result will be conservative, even with clustering
 • Very large solution tank with clustering will be similar to infinite medium problem, with relatively few neutrons leaking. Keff will be overestimated, which is conservative for crit-safety

• Very important to develop a diagnostic for clustering

• Cluster diagnostic for storage racks may be very different from large solution tanks (due to empty space, loose-coupling, etc.)