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1.0 Introduction 
 
This report describes methods for using statistical tests to automatically determine convergence of 
Monte Carlo (MC) iterations in criticality calculations. The methods described herein are intended to 
replace the traditional approach used for the past 60 years:  make a trial run; determine convergence 
based on plots of k-effective and Shannon entropy vs cycle; adjust the input parameters for 
controlling the iterations; make a final run to obtain results and statistics. 
 
The sections that follow provide background information on the MC iteration methods, describe 3 
statistical tests on scalar metrics, and describe 3 statistical tests on fission distributions. The 
combination of all 6 statistical tests is used in mcnp6.2.1 to automatically diagnose convergence of 
the iterations to the stationary-state and begin the tallies for active cycles. The code requires all 6 
statistical tests to pass before diagnosing convergence.  What was previously left to user judgment 
(with varying degrees of success) can now be supplanted by a robust, “guaranteed” assurance with 
quantifiable evidence that a problem has converged. 
 
The automatic diagnosis of convergence is part of a larger effort to thoroughly overhaul the 
calculational methods for criticality problems, providing for automated sampling of the initial fission 
distribution, acceleration of the iteration convergence process, automated detection of convergence 
in the iterations and starting of the active tally cycles, and the diagnosis of undersampling. All of 
these new methods have been prototyped in a local modified version of mcnp6.2 [1] and tested on a  
variety of critical systems. 
 
 
2.0 Background on MC Criticality Calculations  [2] 
 
For the past 60 years, MC criticality calculations for k-effective and the fission distribution have been 
solved using the power method, also called the method of successive iterations [2-6].  
 

𝑆($) =
1

𝑘($)*) ∙ 𝐹
- ∙ 𝑆($)*), 									𝑛 = 1,2,… 

 

where k(n) and 𝑆($) are the k-effective eigenvalue and fission neutron distribution after n iterations, 
and  𝐹-  represents the MC random walk process for a single fission generation. 
 
The MC iteration scheme begins with an initial guess for k-effective and the fission distribution. 
Iterations (called inactive cycles) are performed without tallies until k-effective and the fission 
distribution have converged to their stationary state. After convergence, tallies are turned on, and 
iterations (called active cycles) are continued until sufficiently small uncertainties are obtained for 
desired results.  
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Some straightforward analysis of the MC power iteration method yields the following behavior for 
the single-cycle k-effective and fission distribution [2] as a function of iteration, n: 
 

𝑆($)		 = 		𝑆3		 + 		𝑎*𝜌$𝑆*		 + 		 … 
 

𝑘($) = 𝑘3 ∙ [	1		 + 		𝑏*𝜌$)*(1 − 𝜌)		 + 			 … ] 
 

where the 𝑆;  are eigenfunctions of the operator 𝐹-, kj are the corresponding eigenvalues, terms a1 and 
b1 are constants related to an expansion of the initial fission source guess 𝑆(3) in the basis  𝑆;, and 𝜌 is 
the dominance ratio 𝑘* 𝑘3⁄  (which is always < 1). Only first-order terms are retained above. On each 
successive iteration, the higher-mode (noise) contributions to  𝑆($) and k(n) are reduced. After some 
number of iterations n,   =𝑆($) − 𝑆3=  and  >𝑘($) − 𝑘3>  both become small enough compared to 
statistical noise that the iteration process is said to have converged to the stationary state. At that 
point, tallies are started and iterations continue until sufficiently small statistics on tallies are 
attained. Figure 1 illustrates the k-effective results during the power iteration process, along with 
concerns for the different phases of the MC power iteration process [2].  

During the past 60 years of MC criticality calculations, determining convergence of the iteration 
process has been problematic. Until 2003, the principal means of assessing convergence was to make 
a trial run, examine the plot of k-effective vs cycle (similar to Figure 1), and determine the first cycle 
where k-effective appears to have reached its asymptotic value, considering the statistical 
fluctuations. Unfortunately, that procedure is flawed, since possibly many more iterations are 
required to converge the shape of the fission distribution. (As discussed in [9], k-effective is an 
integral quantity and appears to converge in fewer iterations than the fission distribution.)  
 
In 2003, the metric called Shannon entropy, H, of the fission source distribution was introduced into 
mcnp5 [7-9]. H is computed at the end of each iteration and plotted vs iteration; when H has 
converged, the fission distribution has converged and active cycles can begin. (k-effective converges 
in fewer iterations, as discussed in [9].) To compute H, a grid covering all fissile regions is 
superimposed on the problem, and the number of source neutrons from fission in cycle n are 
counted in each of the grid regions. After normalization to probabilities, 𝑝@

($), H(n) is computed as 

 

 
 

Figure 1. Concerns in MC Criticality Calculations 
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𝐻($) = 	−	B𝑝@
($) 	logF 𝑝@

($)
G

@H*

 

where B is the number of bins in the mesh, and  p log2 p = 0 when p=0. H(n) is a convex function, with 
a minimum value of 0 (for all neutrons in the same bin) and a maximum value of log2 B (for neutrons 
uniformly distributed among bins).  
 
 
3.0 Reference Solution for Statistical Tests on the Fission Neutron Distribution 
 
In the following sections, 3 statistical tests involving metrics are described, and then 3 statistical tests 
involving the fission neutron distribution are described. For statistical tests on the fission neutron 
distribution, it is presumed that an independent, accurate reference solution for the fission source 
distribution is available. For mcnp6.2.1, that independent estimate of the fission source distribution is 
provided by the sparse-storage fission matrix method.  
 
The fission matrix method using sparse-storage was previously described in detail in references [10, 
11], and an update on the current status is in preparation [12]. References [10,11] have shown that 
the fission matrix method provides an accurate solution to the k-eigenvalue criticality problem if the 
mesh spacing is fine enough that the “flat-source” approximation is valid. Importantly, it is not 
subject to the source renormalization bias that can significantly affect the neutron distribution if the 
number of neutrons/cycle is too small [2]. Reference [12] provides details on the current status, 
including the physics-based method for assuring that the mesh is chosen appropriately – fine enough 
to provide accuracy, but not so fine that statistical tallies for the matrix elements introduce too much 
noise. 
 
For the present work, we assume that the fission matrix eigenfunction is a nearly “exact” 
representation of the stationary-state fission neutron distribution. The fission matrix is accumulated 
over all cycles (except the first), while the fission neutron distribution is not accumulated during 
inactive cycles. The eigenfunction for the accumulated fission matrix is approximate at first, but 
converges to the stationary-state distribution well before the single-cycle fission neutron distribution 
converges.  
 
In mcnp6.2.1, tallies for the fission matrix are not made during the first cycle, since the neutrons 
starting cycle 1 have energies sampled from an assumed fission spectrum and may or may not have 
started in valid fissile regions. In addition, physics information is obtained during cycle 1 that is used 
to set an appropriate mesh spacing for accurate fission matrix tallies. Tallies of the fission matrix are 
accumulated starting with cycle 2. Since the fission matrix represents a collection of point-to-point 
Green’s functions, it may be tallied directly, even if the fission neutron distribution has not 
converged.  
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4.0 Metric-Based Statistical Tests for Convergence  
 
Based on the above discussion, the following are proposed as tests for convergence in MCNP 
criticality problems. Beginning with cycle n=2, each block of L consecutive cycles is examined. 

Currently, L=10 is recommended.  

 
Some comments follow: 

• Larger block sizes (L>10) would make the individual tests more robust and reliable, at the 
expense of less-frequent convergence checking and possibly a number of additional cycles. 
That is, choosing too large a value for L will delay the testing, since it is performed only at the 
end of a block of L cycles, and some computer time may be wasted. Smaller block sizes (e.g., 
L=5) lead to increased statistical noise for the testing. In nearly all testing to date on a variety 
of problems, choosing L=10 has proved reliable. 

• For a block of L cycles, the H-slope and k-slope tests are rather obvious tests for stationarity. 
The H-slope test uses statistics of  ±1s, while the k-slope test uses ±2s. The difference is 
simply practical – the variation in H(n) vs n is smaller and smoother than the variation in k(n) 
over a block of successive cycles. A more stringent test for zero-slope is used for the H-slope. 

At the end of each block of L cycles: 
 

Solve the fission matrix equations for the fundamental mode eigenvalue and 
eigenfunction. Then compute HFM, the Shannon entropy of the fission matrix 
eigenfunction. 
 
Test 1 – H-slope: 

Compute the least-squares slope of H(n) vs n for the cycles in the block, and 
compute the standard deviation of that slope. If the magnitude of the slope is less 
than the standard deviation of the slope, then the slope is 0.0 within statistics, and 
the test is passed. Otherwise, the test fails. 
 

Test 2 – k-slope: 
Compute the least-squares slope of k(n) vs n for the cycles in the block, and 
compute the standard deviation of that slope. If the magnitude of the slope is less 
than two standard deviations of the slope, then the slope is 0.0 within statistics, 
and the test is passed. Otherwise, the test fails. 

 
Test 3 – H-block: 

For the fission neutron distribution accumulated over all cycles in the block, 
compute Hblock using the same mesh as used for the fission matrix. If  |(Hblock – 
HFM)/HFM| < 1%, the test passes. Otherwise, the test fails.  
 

If any of the 3 tests fails, then the fission neutron distribution has not converged. All 
results from the current block of cycles are discarded, and a new block of cycles is 
begun.  
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• For the H-block test, note that the fission neutron source for all cycles in the block is 
accumulated first, and then the Shannon entropy is computed once for the block. (The 
average of the H(n) values for cycles in the block may differ significantly from Hblock if 
undersampling or clustering is present [13].) 

• For the H-block test, the tolerance of 1% is arbitrary, but has proved suitable in all testing to 
date. Note that using a smaller tolerance may result in never passing the test, due to possible 
renormalization bias in the fission neutron source distribution if too few neutrons/cycle are 
used. The use of a 1% tolerance appears to be consistent with the strong recommendation to 
use 10,000 or more neutrons/cycle (or 100,000 for reactors, large solution tanks, and loosely-
coupled systems) [14]. 

• For the H-block test, the same 3D mesh must be used for the fission matrix tallies and the 
computation of Hblock.  

 
 
5.0 Distribution-based Statistical Tests for Convergence 
 
These statistical tests involve comparing the fission neutron distribution to a reference distribution 
(the eigenfunction of the fission matrix).  Beginning with cycle n=2, each block of L consecutive cycles 
is examined. Currently, L=10 is recommended.  

 

At the end of each block of L cycles: 
 

Solve the fission matrix equations for the fundamental mode eigenfunction, 𝑺JJ⃗ 𝑭𝑴.  
 
Accumulate the fission neutron source distribution for all cycles in the block, binned using 
the same 3D mesh as for the fission matrix,  𝑺JJ⃗ 𝒏𝒆𝒖𝒕 
 
Test 4 – KL-test: 

Compute the Kullback-Liebler divergence [15]  between  𝑺JJ⃗ 𝑭𝑴 and  𝑺JJ⃗ 𝒏𝒆𝒖𝒕,  
𝑫𝑲𝑳T	𝑺JJ⃗ 𝒏𝒆𝒖𝒕>	𝑺JJ⃗ 𝑭𝑴U.  If  DKL  is less than the critical value for 95% confidence, then the 
test passes. Otherwise the test fails. 
 

Test 5 – KS-test: 
Compute the Kolmogorov-Smirnov statistic [16] for the paired distributions 𝑺JJ⃗ 𝑭𝑴 and 
𝑺JJ⃗ 𝒏𝒆𝒖𝒕,  𝑫𝑲𝑺T𝑺JJ⃗ 𝒏𝒆𝒖𝒕, 	𝑺JJ⃗ 𝑭𝑴	U.  If DKS  is less than the critical value for 95% confidence, 
then the test passes. Otherwise the test fails. 
 

Test 6 – ChiSq-test: 
Compute the chi-square statistic [17] for goodness of fit between 𝑺JJ⃗ 𝑭𝑴 and 𝑺JJ⃗ 𝒏𝒆𝒖𝒕,  c2. 
If c2 is less than the critical value for 95% confidence, then the test passes. Otherwise 
the test fails. 
 

If any of the 3 tests fails, then the fission neutron distribution has not converged. All 
results from the current block of cycles are discarded, and a new block of cycles is begun.  
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Some comments follow: 

• The blocksize L for these tests is the same as for the metric-based tests, and all of the same 
comments apply here. The default blocksize of L=10 appears to be a good choice. 

• The Kullback-Liebler divergence, also called relative entropy, is a metric for comparing 
distributions and is computed by:  

𝑫𝑲𝑳T	𝑺JJ⃗ 𝒏𝒆𝒖𝒕>	𝑺JJ⃗ 𝑭𝑴U =B𝑺𝒏𝒆𝒖𝒕,𝒊 ∙ log𝟐(
	𝑺𝒏𝒆𝒖𝒕,𝒊	
	𝑺𝑭𝑴,𝒊

)
G

@H*

 

where B is the number of bins in the mesh, and the terms in the summation are included only 
if  	𝑺𝒏𝒆𝒖𝒕,𝒊 > 𝟎  and  	𝑺𝒏𝒆𝒖𝒕,𝒊	 > 𝟎. 

• The Kullback-Liebler divergence is found in the information theory literature, and is not 
associated in that literature with statistical testing. However, in the statistics literature there is 
a statistical test for comparing 2 distributions called the “G test,” also known as the likelihood 
ratio test [18]. The G test statistic is related to DKL by:    𝑮 = 𝟐𝑵 ∙ 𝑫𝑲𝑳T	𝑺JJ⃗ 𝒏𝒆𝒖𝒕>	𝑺JJ⃗ 𝑭𝑴U, where N 
is the number of neutrons/cycle used in computing 	𝑺JJ⃗ 𝒏𝒆𝒖𝒕. Accordingly, the critical value for G 
at the 95% confidence limit may be found, and then “converted” to a corresponding target 
test statistic for DKL by G0.05/2N. 

• For large N, the G0.05 statistic for 95% confidence approaches the c20.05 value. For the 
applications here, where N is always in the range 104 – 108, use of the chi-square statistic (in 
place of the G value) is entirely justified. 

• The KS-test strictly applies to comparing 1D distributions. For the 3D distributions in criticality 
problems, the proper ordering of the paired entries in 𝑺JJ⃗ 𝑭𝑴 and 𝑺JJ⃗ 𝒏𝒆𝒖𝒕 is handled pragmatically: 
Initially, the pairs of entries in 𝑺JJ⃗ 𝑭𝑴 and 𝑺JJ⃗ 𝒏𝒆𝒖𝒕 are sorted such that 𝑺JJ⃗ 𝑭𝑴 values are in increasing 
order (as for the 1D KS-test), and then DKS is computed. Then the entries are randomly 
permuted and DKS is determined again. The permute/recompute process is repeated a 
number of times, and the maximum of all the DKS values is retained. In very many cases, the 
first DKS computed with increasing ordering of 𝑺JJ⃗ 𝑭𝑴 has been the maximum, but that is not 
guaranteed. 

• The critical value for DKS at the 95% confidence level is computed for large degrees-of-

freedom by 𝐷]^,3.3` = a−*
F
∙ 𝑙𝑛 c3.3`

F
d ∙ F

e
 ,  where n=B-1 and B is the number of nonzero bins 

in 𝑺JJ⃗ 𝑭𝑴. 

• The critical value c20.05 for the chi-square test for large degrees of freedom is obtained from 
the critical value for a normal distribution by [19] 

𝜒3.3`F ≈ 𝜈	 ∙ i1 −
2
9𝜈 +

k 2
9𝜈 ∙ 𝑧3.3`

m

n

 

 
• For all of the distribution-based statistical tests, there is a concern regarding the mesh spacing 

used for computing 𝑺JJ⃗ 𝑭𝑴 and 𝑺JJ⃗ 𝒏𝒆𝒖𝒕. If the mesh spacing is too fine, then there may not be 
sufficient counts of the fission neutrons in the mesh bins for the statistical tests. (Bin counts of 
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5 or more in each bin are typically recommended for the distribution-based tests.) For the 
present application, the first concern in choosing the mesh spacing is that it be sufficiently fine 
to permit an accurate solution of the fission matrix equations. There must be a balance, 
however, between the fission matrix solution accuracy and the statistical tests, such that the 
mesh is not refined more than necessary. These issues are discussed in Reference [12]. For the 
present applications, it is reasonable to increase the number of neutrons/cycle to a value that 
is 10-15 times larger than the number of mesh bins that contain fissile material, in order to 
provide sufficient counts for the statistical tests. At present, that condition is not enforced, 
but is under consideration for future improvements. 

 
 
 
6.0 Conclusions and Further Work 
 
The 6 statistical tests described in Sections 4 and 5 are performed at the end of each block of cycles in 
an MCNP criticality problem, as implemented in a local version of MCNP6.2. If all 6 tests pass, then 
convergence of the iteration process is asserted and “locked in” for the duration of the calculation. 
Active cycles and tallies begin with the following cycle. During subsequent active cycles, some of the 
convergence tests may occasionally fail (after all, statistical fluctuations happen), but will pass again 
on later cycles. Once an entire block of active cycles is complete, the population size testing described 
in [13] is performed to diagnose whether the number of neutrons/cycle is sufficient to avoid 
undersampling of the fission neutron source. 
 
These convergence tests have been applied to an assortment of criticality problems, including: a 2D 
PWR model, a 3D model of the Sandia ACRR burst reactor (with FREC), a 3D model of the  ATR 
(advanced test reactor), the 3D Kord Smith Challenge problem (OECD-NEA 3D reactor computer-
performance benchmark), the August Winkelman research reactor, the ICSBEP benchmark case LEU-
COMP-THERM-078 (a Sandia experiment), a large 3D storage pool with checkerboard arrangement 
(OECD-NEA EG on source convergence benchmark), a 400 cm tall single reactor fuel-pin unit cell with 
reflecting boundary conditions, and the Whitesides problem (k-effective of the world).  
 
In all cases tested, there was not a single instance of passing the convergence tests prematurely 
(before convergence was actually achieved). That is, the combination of the 6 statistical tests for 
convergence did not yield any “false positive” results for convergence.  
 
The other, less important, concern is whether the statistical testing was too demanding, requiring 
many extra cycles and computer time. In some of cases tested, 1 or 2 extra blocks of cycles were 
needed beyond traditional estimates of convergence (i.e., eyeball the H vs cycle plots to determine 
when the asymptotic level is reached). Since the statistical tests examine more quantities in more 
detail than the conventional method, there is no definitive evidence of “false negatives.” That is, in 
the cases where an extra 1 or 2 blocks of cycles were needed beyond conventional estimates, it is 
likely that the conventional estimates were overly optimistic. 
 
To summarize, the combination of the 6 statistical tests for convergence appears to be robust, 
reliable, and a definitive means of automatically determining convergence. Quantified evidence of 
convergence is provided by the statistical metrics that are calculated and printed. 
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Obviously further work is needed, including: 

• Apply the tests to many more criticality problems. Many more ordinary cases as well as odd-
ball cases need to be tested.  

• A full report on the testing process will be completed. 

• For some problems – large reactors, fuel storage pools, very loosely-coupled problems – there 
are concerns about how many cycles are needed to get an accurate representation of the 
fission matrix, especially when the number of neutrons/cycle is small. These concerns are 
being investigated, and it is likely that some additional requirements will be placed on solving 
the fission matrix equations. That issue is separate from the statistical testing for 
convergence. 

• For some problems – large reactors, fuel storage pools, very loosely-coupled problems – there 
are concerns about how many neutrons/cycle are needed to provide sufficient counts in the 
mesh bins so that the distribution-based statistical tests are reliable. These concerns are also 
being investigated, and it is likely that some additional requirements may be imposed on 
neutrons/cycle relative to the number of mesh bins. 

• While the use of 6 statistical tests for convergence has been robust and reliable, it is possible 
that additional tests will be included. 
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