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ABSTR.A.CT 

Historically, Monte Carlo variance reduction techniques have developed one at a time 

in response to . calculational needs. This paper provides the theoretical basis for obtain

ing unbiased Monte Carlo estimates from all . possible combinatiom of variance reduction 

techniques. Hitherto, the techniques have not been proven to be unbiased in arbitrary 

combinations. The authors are unaware of any Monte Carlo techniques (in any linear 

process) that are not treated by the theorem herein. 
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I. INTRODUCTION 

The Los Alamos computer code MCNp l allows the user to simulate transport events 

according to the natural event probabilities. When an event is sampled according to its 

naturally occurring probability, the sampling is called an AnAlog etlent ~Ampling. H every 

event on a random walk is sampled according to the naturally occurring probabilities, the 

random walk is called an AnAlog rAndom fDGlk. H every random walk is analog, then the 

estimates produced by these walks are Analog e.stimAUI. 

Analog sampling is often computationally impractical when estimates associated with 

rare events are desired. For this reason, MCNP (li1ce most general-purpose Monte Carlo 

transport codes) allows DODaDelos samplinp for which there are DO correspoodin,; natural 

processes. Nonanalog Monte Carlo teclmiques are esaentiaJ to many calcul&ioos and his

torically they have been deve10ped one at a time as oeeded. Each new nooanaJog technique 

has, at best, been proven to preserve the expected tallies (i.e., be unbiued) wben used by 

itself. The techniques have not been plO9m to be 'mbiueci in arbitrary rombinatiooa. 

This paper provides the tbeol'etical bmdatioa b UIiDs any arbitrary combinatioal of 

nonaDalog Moote Cvlo tedmique8 c:urreuUy in WCNP. Parthermoft, the prooIa cootaiDed 

herein are dewjprd to COft:r all CUiiEid """..,.". tee hnj.qael in AD)" Wome Carlo tnDIpon 

code .. well .. future tedmiqaeL Tbe _bon 1ft m • ue ol.rJ tecMiqaeI, ill .., m.. 
Monte Carlo ~ that are DOt OiIftIecl by the .. wal tbeareu» bereiD. 
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II. PHYSICAL INTERPRETATION OF MONTE CARLO 

PARTICLE TRANSPORT 

An analog Monte Carlo simulation can be interpreted as a direct imitation of nature. A 

computer model of the physical transport process is produced by specifying the stochas

tic physical laws governing particle behavior. The computer then applies these laws to a 

computer particle on a. direct one-for-one basis. That is, each computer particle is made 

to represent one physical particle. To the extent that computer particles obey the same 

stochastic laws as physical particles, the behavior of the computer particles will be statis

tically identical to the behavior of the physical particles. Thus one can infer the statistical 

properties (e.g., average number of boundary crossin!,,) in a physical system by observing 

the statistical properties in the computer model. 

The purpose of a no~ simulation is to provide the same mean estimates as the 

analos simulation, but with Jess variance. In a nonanalog Monte Carlo simulation, ~ 

particle is Uliped a statistical wei8ht (~t") that multiplies the tallietl (contribution. 

to the estimates) made by the particle. Fcx example, when a pertjde of wei&ht 2 croeeea 

a surface, the particle's tally will be the AIDe .. if 2 partjcln bad ao.ed the 1Ul'face. 

The intuitive notion is that the we.isbt ill the .. Imber at phywical particles ~ 

by the computer perticle. Common ~ tedmique8 caD DOOph,8caDr redWribute 

weiglt (e-l., aplittins). d!lti~ -eicht (~ be Rneejen roaIetie), 01' create 1NIi&bt (e.s., 

win Ru_an roulette). To OOMmce peopie that the JVIOAnalos techniques will produc:e the 

same expeded tallies .. M'''' Moate ~ it .. usually dem .... tra&ed that, OIl Mftage, 

the number at partidea (i.e., -=icbi) ia PftWi·wed. 

F« example, nP-rin& a pmicIe of • ...., ., at ph e IpKe pOiat P - (r,."t) with 

two panicles at P, each of weicht wj2(i.e,. ipIittias),.till. rep ___ tIP phywical partidea 

at P (note that the expected ~ is triTially pctSUwed). Similarly, a particle of ~ 

w at P can be replaced , with probability p by a perlicle of ~ wlp at P, ~ with 
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probability (1 - p) the particle is terminated (Russian roulette). The expected weight at 

P afterwards is p(w/p) + (1 - p)O = w, the same as without Russian roulette. Thus the 

expected number of particles at P has been preserved. 

H the expected number of particles (weight) is preserved with ~ nonanalog sample, 

it seems plausible that all (nonanalog) tallies have the same expected values as the analog 

calculation. Weights are, in fact, analogous to a "fair game" or martingale (Doob,2 p. 299). 

In a martingale, the expected value of the next element in a sequence is simply the current 

value of the sequence. Likewise, for particle transport, it will be shown that the expected 

weight following the next nonanalog game is that of the corresponding analog process, so 

that the difference between the expected. weight f~ the next nonanalog ~ame, and 

the correspondint; analog weight, is the same as the current difference, i.e., O. 

ilL REASON FOR THE DEMON 

Before p~ to the proof, it is ~ .. orth pointq out that special combinations of 

variance reduction techniques have been proven to preaerve the expected talliee. FOr'in

stance, Spanier and GelbardJ (p. 113) Ibow that for a subcritical medium each ttep of tbe 

random. walk can be MllJpIed from a DOa.fiG1IiaJ probability. To praer~ tbe expeded 

weiPt at each aiep the particle'. ~ • maltipIied ." the raUo of the true pbywic:aI 

~ty to the ~ pcobabiJity vtqeUJr ampIed. ha fad, they explicitly .tate 

"the partides may be thou&ht el .. c:arryiDc .Pta in order to edjult the expeded weicb* 

~ mlliaioo to the ana". value." T'beir proof ftlCluUa expIkit JmowJedp of the 

particuJK ~ reductiao tedmiqae. beiac wed. Their pcool wiIl "aeeclto be modified 

if, fcx iDataoc:e~ _ a weiPt ~- pmeil ecIde4 

UnIib -the afolaneDtiooed proof, the proOf herein doe. _taR a Ixed coIlectioo of 

~ techniques and prove-that, u.ed topher, they pI'f:Iei~ the expeded tallies 

"Instead, the prool herein coaaiden aDpo.ible nma~ techniques that preseIVe the 

expectedwei~t execu~ eadl physical sequence of events. It is not sufficient simply to 

$ -
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show that the particle density is preserved, because some tallies depend on more than just 

the present particle density. For instance, one may be interested in tallying the number of 

particles entering region B that had previously crossed through region A. (This is called cell 

Hagging in MCNP.) One needs to show that the expected weight undergoing any possible 

event string is preserved, just in case a user decides to ask for a tally on that event string. 

Because tallies are made on event strings, event strings assume central importance in the 

proof. 

The proof herein is a bit abstract because the authors wanted a proof that would apply 

to all possible nonanalog techniques and not just the techniques currently in practice. It 

may help the reader to t~ about the problem the way that the authors did before the 

authors encountered some technical difficulties. Initially there was no demon. One simply 

imapned a Monte Carlo code with many p<aible IlOIl&D&los techniques available. !J:na«

me that a user selects aome set, V, of DOOaD~ techniques. Will ~ V preeerve the 

expected tallies (produced by anaJos samP1in8)? To ~ thia question, a sequence of 

nonanalOl calculations wu considered wboee limit .... the oripw (u.er specified) nouana-

los calculation. The i'ia 1)OOAQaios ealcul.tiOIl ... de6ned to be identical to the orisinal 

IlOQADaq cakulatiOO throu&b the 8nt i raDdom numbera; ~t all remainiDlI8Dl· 

pIinp were a~ W"nh thiI c:WIDitioo, i - 0 impIiee • ~ anaIos cakn1atioa aod 

i - 00 .. the mpw ",.,.,..q eakulMiaa. AD iDcIudift proof .. xed tbM the expeetecl 

bebaYior' M i - 00 WM the __ - &.be anNns pme. 

The diftimlty with thMI ~ ... that it became exaoectilJll1 ~ to ripoua1 

deftne what ~ aft.- t.be tlnt i 1 .... lbII i.i ...... mE , t la' ~, the i" 

raDdom mlDJber misht be in the middle m . ' M ... ""~ . .tepI. The aatban 
, ' ' 

Den 'tnedtodefine the i pme .. ~ ,to the oripaaI ~, calculatioa throaP ' 
. . . . 

the mat krandcm Dllmhen with DO new ~ techniques started." That is, noruu)",« 

techniques already started c:ou1d ecmpIete,oot the calculaboo would "revert to 'Nl-q as 
, ' , 

quickly _ ,paasible." This too became ex~ difficult to define preci8e1y. ~ ambon 



then realized that what was really important was not that the remainder of the calculation 

had to be analog, but that the remainder of the calculation had to have a fixed set of 

nonanalog techniques that had the same expected behavior as the analog calculation. With 

this realization, the authors redefined the k'" nonanalog calculation as indicated below. 

To ensure that no clever Monte Carlo practitioner can provide a nonanalog technique 

that preserves the expected weight but that is not covered by the theorem herein, a demon 

is created. This demon is free to alter the sampling in any way that preserves the expected 

weight executing all physical event strings. The demon may replace any analog sampling 

with any nonanalog sampling. The demon may also replace any nonanalog sampling with 

a difl'erent nonanalog sampling. F\u thermore, the demon is free to make theee changes 

through the first Ie random numbers. After Ie random numbers the demon may not change 

the sampling and the sampling is done ~ to the demon's last specification. This is 

called the Ie game and the 8alDyling rules specified on the ell random number are called 

the e game rulu and remain fixed throusbout the remainder of the particle'. random walk. 

Tw. is shown in F"lS. 1. 

The particle'. history Itarta with ."aq rulea becawe the demon bu made no alter

atioos. Thus ~ 0 pine ruJa are .,.Joe aod beeau8e all aub.equeut .ampIinp are dooe 

with the same rulea, thea the enUre 0 pille .. anaIoc. The pmollbon br iDdudioa that 

the expected ~ executiDa all eWDl ... ill the i pille ;. the JUDe • the males 

same (0 pme). Taki.o& the limit _ i - 00 mow. that the DODe..Jos raodom walk (UDder 

sp«iBed CQIlditi0a8) praens the e'loeded ..... exeeutinc all eftM ItriDp. 

7 



IV. DISCUSSIONS AND DEFINITIONS 

The random numbers are central to the proof herein because the random numbers com-

pletely determine a particle's history. (A particle history is one independent sample fol

lowed from the source to termination of the source particle and its progeny.) A few defini

tions involving the random numbers are required. (For what follows, assume all integrals 

and sums exist and their values are finite.) 

Definition 1: Let (rl' r2, r3,"', r~) be k random numbers used by a history. (The rj are 

independent uniform random numbers on (0,11.) 

Definition 3: r A (rl' r2, r3, ... ) 

Definition 6: An eftftt ,tn.g is a teqUeIlce of pbysieal eftIlta trac:iDs a trade bad: to the 

aource. ('I'allieIJ ale made upoo ~ ItriDs occ:uneDCa.) 

Definition 7: S~(ri) = total .apt aecutiq eftS ItriD& d "'" the 1m k random 

nmnben in the onnanalos pme. 

Notes: 

1) For k = 0, then Si.. ) = ° because no physical e\'eDt strin~ have been executed. 

. '. 
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2) For k = 0, then B.( ) = expected total weight executing event string d under analog 

rules. 

v. CONDITIONS FOR PRESERVATION OF EXPECTED WEIGHT 

Suppose that just before each random nwnber, (rk+l), is determined, a demon decrees 

what Monte Carlo techniques will be in use until his next decree (see Fig. 1). The only 

restrictions placed on the demon's decrees will be that the expected weight executing all 

event strings must satisfy 

for all event strings d and all k. 

Theorem 1: IT all samp~ have the properly (for all k, d) 

and if 

Proof (by induction) 

Suppose thai for some k (and .u d) 



c 

(3) 

Substituting Eq. (1) into Eq. (3) yields 

Noting that J dr1c J dr1c+l -+ J dr1c+l yields 

(5) 

Thus, if Eq. (3) is true for some ic and all d, then by induction, it is true for all Ie' ~ Ie and 

all d. Note that Eq. (3) is true for Ie = 0 (and all cl), that is 

(6) 

Thus, Eq. (3) ia true b all k ~ 0 and all d. TakiDc the limit of Eq. (3) .. k -+ 00 (oc::Kin& 

Eq. (2)) yields 

(7) 

as desired. (B~ ) is the apeeted weiP& VDde.WwaI e...a striuc d in t.be aaaJos pme 

aDd the RHS is the expeded -eicbl UDdea"'" ewat ... I. in theDDllanaJos pme.) 

VI. CONDrrIONS FOR TALLY PRESERVATION 

We have shown thai the expected ~ ~ each event st~ d is preaerved. 

From tills it can be demonstraied u..t the tallies ueaJao.prea:rved provided that ~ are 

II 
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proportional, in expectation, to the track weight. To do this, some additional notation is 

introduced: 

Definition 9: Sd(r) = total weight executing event string d in the analog game using r 
(corresponding to SIl(r) for nonanalog games). 

Definition 10: D = the set of all possible event strings d. 

Definition 11: D(T) = the set of all event strings produced by the non analog transport 

process with random numbers r. 
Definition 12: D"( r) = the set of all event strings produced by the analog transport process 

with random numbers r. 

{

I if event string d is produced by the nonanalog 
Definition 13: IIl(r) = 0 transport process generated by r 

otherwise. 

{

I if event strin;; d is produced by the analog 
Definition 14: 1;(r) = 0 process with random numbers r 

otb.enri8e. 

I,. and 1; are membership iDdicatcx fuDctiom for the ~ D(;:) ~nd D-(r'), respectively; 

e.!., Iir) = 1 i« ddJ(r). Becau.e Bi. ) =- J 5l(;t)6br ~ it £oUoww from Eq. (7) 

thai 

(8) 

and that 

dill . (9) 



There are two types of tallies, those that do not require additional random numbers, 

(e.g., track-length tallies), and those that may, (e.g., point detector tallies in MCNP). For 

the first type, let 

Definition 15: Td( w) = the tally made by total weight w executing event string d. 

The tally associated with the nonanalog transport process is 

f(r) = L Td(S4i(T) , 
4ifD(r) 

and the corresponding tally associated with the analog process is 

T-(r) = L T~(~(r) . 
uD-(r) 

Monte Carlo tallies are proportional to their ~ght, i.e., 

TitD) = lOTi!) . 

(10) 

(11) 

(12) 

With E( ) denotms expectatioo, the expected value of the tally in tDenooanaJos proaa 

E(t(i') - J E T.,(SJ(r)clr 
IIrD(r) 

By Eq. (12) aDd DeIn. 13, this beocJmee 

= LTA1) f SAr)IA7J6 , 
*D 

(13) 

(15) 

where integration and S'lunmaiion can be interchant;ed because the integand and summand 

are ~dent. ~for the~ ,ploceaa, 
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E (r(T)) = LTli(l) J Sd(T)Id(r)dr , 
dtD 

(16) 

and hence by Eq. (9), 

(17) 

A similar result can be shown for stochastic tallies. These tallies require additional 

random numbers if = (ql, q2, ... ). For this case, let 

Definition 16: TIl( w, q) = the tally made by ~ight tv executing event string d when ran

dom numbers if are used in the tally process. 

f(r, q) and fc(r, V have corresponding definitions. Corresponding to Eq. (12), for stochas

tic tallies the following holds: 

J TIl(W,i)Ji ~ 10 J TIl(I,vdi (18) 

The proof that E(7'(;:,q» = E(7--(r,v) is much the same as before: 

E (t(r,i») = J f E T,,(Sir),i)tlidT 
.0( .. ) 

(l9) 

= f E [J Til (Sir). i>tii] 
*D(r) 

(20) 

= f E Sir) f Til,i)diidr 
«.0(,.) 

(21) 

=- JEr..<r)S~r) J T~~i)di6 
.uJ - . ' 

(22) 

= ~[IT.(l. il4t) I I.(i')S.(r)dT (23) 

These steps follow from the independence of if and d, and by the U8e of Eq. (IS) and 

Defn. 16. Similarly, 

13 • 



(24) 

and hence by Eq.(9), the expected tally is preserved: 

(25) 

VII. COROLLARY 

M If each nonanalog technique begins by throwing a random number (the (k + 1)") that 

is not used, the event strings are unaffected and hence for this nonanalog technique 

(26) 

~ Furthermore, substituting this into Eq. (1) yields (for this nooanalos technique) 

-
(27) 

u the cooditioo fcc ~ the e'.wted ~ eucutins aD eftDt striup. Prom DOW 

on, the ~ technique. wiD throw away ODe random number 10 that Eq. (27) appUe.. 

Applicatioa to IDtepr SpIi«1ac 

Deftnit~ - Splitting j-b-l OIl lID ~~ suDpIed track means: 

track ~cept that their weights are tD Ii. 
2. The split particles will be foUowed exactly the same as the parent perlicle would have 

been followed. That is, if (in the absence of the split) the parent track proquces a 
'" .' . , . " .. '. - .' ." - .. -. ' . ' . ". 

. J~ ' " r:' \ ·14 

./ 



total weight IVtlCr) executing eyent strint; d when the track's subsequent random walk 

is sampled using r, then the it" split track will produce 

(28) 

total weight executing event string d when the itlt track's subsequent random 'walk is 

sampled using r. 
Because the random walk for parent particle track G is being sampled independently 

of all other particle tracks, all other tracks will be unafFected by a split of track G. Thus 

their distributions of random walks will be identical, independent of whether track G is 

V split. Thus if the j split tracks have the same expected weight executing all event strings 

as track G, then the expected weight execut~ all event strin~ in the entire random walk 

will be preserved as required. 

The expected total weisht execu~ event strinI d in d~ split cue is 

E [tw~ri)l = tE(lv;,j(;r;)1 = t f W;,j(r;)JT; 
i-I ;'1 ... 1 

(29) 

-tJ W~ri)6i - JW.,(;t)6 
... 1 J 

Note that the last term is the expected ~ exuulin& eftDt Itrin& d b the puent 

track 10 that the j split tradta haft tbeame expe-::ted - ~ eDeutia& aD eftIDt IttiD9 . " 

as track G. This romplew.s the proof w uN· I'! do_ .., 4l27)d. tbecoroJluJ: 

Note that alihou&h the splittiDc poehM requiaed that -the IpIit tn.cb haw the AIDe 

distribution of random waJb .. the p8ftDl. md _ the distribution of raudom ""walb of 

the split tracks can be ~ in subeequeut oonaQaIo! pmes. Thus there is no to. of 

generalit} in de~ splittin« in the above manner. 

/ . . 
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VIII. CONCLUSION 

This paper provides theoretical justification for arbitrary combinations of nonanalog 

Monte Carlo techniques. 
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nGURE CAPTIONS 

Figure 1: Specifications for Demon'. Ruie Chanp'. 



I Demon free to change rules _I • 
k 88 SpeCified at k 

Demon free t.G change rules tIDcl ruIee ~ 
~ ______________ + __ ~I ______ ~. k+l~ 

k :+1 • &JpeCifted at k+l ruIe&i 

Figure 1. Specifications for Demon's Rule Changes. 


