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Historically, Monte Carlo variance reduction techniques have developed one at a time
in response to calculational needs. This paper provides the theoretical basis for obtain-
ing unbiased Monte Carlo estimates from all possible combinations of variance fedixction
techniques. Hitherto, the techniques have not been proven to be unbiased in arbitrary
combinations. The authors are unaware of any Monte Carlo techniques (in any linear

process) that are not treated by the theorem herein.
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I. INTRODUCTION

The Los Alamos computer code MCNP! allows the user to simulate transport events
according to the natural event probabilities. When an event is sampled according to its
naturally occurring probability, the sampling is called an analog event sampling. If every
event on a random walk is sampled according to the naturally occurring probabilities, the
random walk is called an analog random walk. If every random walk is analog, then the
estimates produced by these walks are analog estimates.

Analog sampling is often computationally impractical when estimaté associated with
rare events are desired. For this reason, MCNP (like most general-purpose Monte Carlo
transport codes) allows nonanalog samplings for which there are no corresponding natural
processes. Nonanalog Monte Carlo techniques are essential to many calculations and his-
torically they have been developed one at a time as needed. Each new nonanalog technique
has, at best, been proven to preserve the expected tallies (i.e., be unbiased) when used by
itself. The techniques have not been proven to be unbiased in arbitrary combinations.

This paper provides the theoretical foundation for using any arbitrary combinations of
nonanalog Moate Carlo techniques currently in MCNP. Furthermore, the proofs contained
herein are designed to cover all current nonsnalog techniques in any Monte Cario transport
code as well as future techniques. The authors are unaware of any techniques, in eny linear
Monte Carlo process, that are not covered by the general theorems herein.




II. PHYSICAL INTERPRETATION OF MONTE CARLO
| PARTICLE TRANSPORT

An analog Monte Carlo simulation can be interpreted as a direct imitation of nature. A
computer model of the physical transport process is produced by specifying the stochas-
tic physical laws governing particle behavior. The computer then applies these laws to a
computer particle on a direct one-for-one basis. That is, each computer particle is made
to represent one physical particle. To the extent that computer particles obey the same
stochastic laws as physical particles, the behavior of the computer particles will be statis-

™M tically identical to the behavior of the physical particles. Thus one can infer the statistical
= properties (e.g., average number of boundary crossings) in a physical system by observing
- the statistical properties in the computer model.
- Thepurpmeofanonmabgsinnﬂationistoprovidetbcumemeanestim&tecuthe
analog simulation, but with less variance. In a nonanalog Monte Carlo simulation, each
; , particle is assigned a statistical weight (“weight”) that multiplies the tallies (contributions
— to the estimates) made by the particle. For example, when a particle of weight 2 crosses ,
-~ a surface, the particle’s tally will be the same as if 2 particles had crossed the surface.

The intuitive notion is that the weight is the number of physical particles represented
by the computer particle. Common nonsnalog techniques can nonphysically redistribute
weight (e.g., splitting), destroy weight (e.g., lose Russian roulette), or create weight (e.g.,
win Russian roulette). To comvince peopie that the nonanalog techniques will produce the
same expected tallies as analog Monte Carlo, it is usually demonstrated that, on average,
the number of particles (i.c., weight) is preserved.
mephMawﬁ&didﬁvaWpﬁP-(nv,t)ﬁth
two particles at P, each of weight /2 (i.e,. splitting), still represents w physical particles
at P (note that the expected weight is trivially preserved). Similarly, a particle of weight

w at P can be replaced , with probability p by a particle of weight w/p at P, or with
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probability (1 — p) the particle is terminated (Russian roulette). The expected weight at

P afterwards is p(w/p) + (1 — p)0 = w, the same as without Russian roulette. Thus the
expected number of particles at P has been preserved.

If the expected number of particles (weight) is preserved with every nonanalog sample,
it seems plausible that all (nonanalog) tallies have the same expected values as the analog
calculation. Weights are, in fact, analogous to a “fair game” or martingale (Doob,? p. 299).
In a martingale, the expected value of the next element in a sequence is simply the current
value of the sequénce. Likewise, for particle transport, it will be shown that the expected
weight following the riext nonanalog game is that of the corresponding analog process, so
that the difference between the expected weight following the next nonanalog game, and
the corresponding analog weight, is the same as the current difference, i.e., 0.

III. REASON FOR THE DEMON

Before proceeding to the proof, it is v.orth pointing out that special combinations of
variance reduction techniques have been proven to preserve the expected tallies. For in-
stance, Spanier and Gelbard® (p. 113) show that for a subcritical medium each step of the
random walk can be sampled from a nonphysical probability. To preserve the expected
weight at each step the particle’s weight is multiplied by the ratio of the true physical
probability to the noaphysical peobability actually sampled. In fact, they explicitly state
“the particles may be thought of as carrying weights in order to adjust the expected weight
undergoing collision to the analog value.” Their proof requires explicit knowledge of the
particular variance reduction techniques being used. Their proof will need to be modified
if, for instance, a weight cutoff game is added. |

Uniike the aforementioned proof, the proof herein does not take a fixed collection of

expected weight executing each physical sequence of events. It is not sufficient simply to
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show that the particle density is preserved, because some tallies depend on more than just

the present particle density. For instance, one may be interested in tallying the number of
particles entering region B that had previously crossed through region A. (This is called cell
flagging in MCNP.) One needs to show that the expected weight undergoing any possible
event string is preserved, just in case a user decides to ask for a tally on that event string.
Because tallies are made on event strings, event strings assume central importance in the
proof.

The proof herein is a bit abstract because the authors wanted a proof that would apply
to all possible nonanalog techniques and not just the techniques currently in practice. It
may help the reader to tiink about the problem the way that the authors did before the
authors encountered some technical difficulties. Initially there was no demon. One simply
imagined a Monte Carlo code with many possible nonanalog techniques available. Imag-
ine that a user selects some set, V', of nonanalog techniques. Will using V' preserve the
expected tallies (produced by analog sampling)? To answer this question, a sequence of
nonanalog calculations was considered whose limit was the original (user specified) nonana-
log calculation. The k'* nonanalog calculation was defined to be identical to the original
nonanalog calculation through the first & random numbers; afterwards, all remaining sam-
plings were analog. With this definition, k = 0 implies a completely analog calculation and
k = oo is the original nonanalog calculation. An inductive proof showed that the expected
behavior at k = co was the same as the analog game.

The difficulty with this approach was that it became exceedingly complex to rigorously
define what “xnalog after the first k random numbers” meast. In particulsr, the k%
random number might be in the middle of s nonsnalog calculational step!. The authors
mm'mmmm-wummmmw
the first k random numbers with no new nonanalog techniques stasted.” That is, nonanalog
techniqtmdreadystaﬁedcmﬂdcanpktqutheaknhﬁmmuld“mvmm-@;hgu
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then realized that what was really important was not that the remainder of the calculation

had to be analog, but that the remainder of the calculation had to have a fixed set of
nonanalog techniques that had the same expected behavior as the analog calculation. With
this realization, the authors redefined the k** nonanalog calculation as indicated below.

To ensure that no clever Monte Carlo practitioner can provide a nonanalog technique
that preserves the expected weight but that is not covered by the theorem herein, a demon
is created. This demon is free to alter the sampling in any way that preserves the expected
weight executing all physical event strings. The demon may replace any analog sampling
with any nonanalog sampling. The demon may also replace any nonanalog sampling with
a different nonanalog sampling. Futthermore, the demon is free to make these changes
through the first k random numbers. After k random numbers the demon may not change
the sampling and the sampling is done according to the demon’s last specification. This is
called the k game and the sampling rules specified on the k** random number are called
the k game rules and remain fixed throughout the remainder of the particle’s random walk.
This is shown in Fig. 1.

The particle’s history starts with analog rules because the demon has made no alter-
ations. Thus the 0 game rules are analog and because all subsequent samplings are done
with the same rules, then the entire 0 game is analog. The proof shows by induction that
the expected weight executing all event strings in the k game is the same as the analog
game (0 game). Taking the limit as k — oo shows that the nonanalog random walk (under
specified conditions) preserves the expected weight executing all event strings.
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IV. DISCUSSIONS AND DEFINITIONS

The random numbers are central io the proof herein because the random numbers com-
pletely determine a particle’s history. (A particle history is one independent sample fol-
lowed from the source to termination of the source particle and its progeny.) A few defini-
tions involving the random numbers are required. (For what follows, assume all integrals

and sums exist and their values are finite.)

Definition 1: Let (r1,r2,r3,---,r;) be k random numbers used by a history. (The r; are
independent uniform random numbers on (0,1].)

Definition 2: 7k = (r1,72,73,-*,T¢)

Definition 3: 7 2 (ry,r2,73,-*)

Definition 4: [ ( )dfy = fdry fdra--- fdri( )

Definition 5: [ ( )dF £ fdr; [dry--- [drj---( )= ;1% [()dr

Definition 6: An event string is a sequence of physical events tracing a track back to the
source. (Tallies are made upon event string occurrences.)

Definition 7: S¢(7i) = total weight executing event string d through the first k& random
numbers in the nonanalog game.

Definition 8: B4(7i) = expected total weight executing event string d sfier the first &

Notes:

1) For k =0, then Sg( ) =0 because no physical event strings have been executed.
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2) For k = 0, then By( ) = expected total weight executing event string d under analog

rules.

V. CONDITIONS FOR PRESERVATION OF EXPECTED WEIGHT

Suppose that just before each random number, (r¢41), is determined, a demon decrees
what Monte Carlo techniques will be in use until his next decree (see Fig. 1). The only

restrictions placed on the demon’s decrees will be that the expected weight executing all

event strings must satisfy

o0
i Ba(i) = [ [Sain) + BalFir)drin = Su )
“T
for all event strings d and all k.
- Theorem 1: If all samplings have the property (for all k,d)
. Theorem1
o
Bu@) = [ [SuGun) + BulFasn)]drans = Si(R) M ,
and if f
Jim By(F)=0 (2)

then the expected weight executing all event strings d is preserved.
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Proof (by induction)
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Ba( )= [ [Su()+ Bati)] e . 3)

Substituting Eq. (1) into Eq. (3) yields

Bu )= [ [5670 +{ [ (SaGran) + BaGes) e - SaGo} e . (@)

Noting that [dfy [ dris; — [ dieyy yields

Bu( )= [ [Sein) + BaGean)] e - (%)

Thus, if Eq. (3) is true for some « and all d, then by induction, it is true for all &' > k and
all d. Note that Eq. (3) is true for k = 0 (and all d), that is

By( )=S4( )+Ba( )=0+Bg( ) . (6)

Thus, Eq. (3) is true for all k > 0 and all d. Tuking the limit of Eq. (3) as k — 0o (noting
Eq. (2)) yields

Ba( )=/SJ(7)¢5" L (7

as desired. (By( ) is the expected weight undergoing event string d in the analog game
and the RHS is the expected weight undergoing event string d in the nonanalog game.)

VI. CONDITIONS FOR TALLY PRESERVATION

We have shown that the expected weight executing each event string d is preserved.
From this it can be demonstrated that the tallies are also preserved provided that they are




proportional, in expectation, to the track weight. To do this, some additional notation is
introduced:

Definition 9: S3(7) = total weight executing event string d in the analog game using 7
(corresponding to S4(7) for nonanalog games).

Definition 10: D = the set of all possible event strings d.

Definition 11: D(¥) = the set of all event strings produced by the nonanalog transport
process with random numbers 7.

Definition 12: D?(7) = the set of all event strings produced by the analog transport process
with random numbers 7.

1 if event string d is produced by the nonanalog
Definition 13: I(7) = transport process generated by 7

0 otherwise.

1 if event st}'ing d is produced by_.thc analog
Definition 14: I§(F) = process with random numbers 7

0 otherwise.

I4 and I are membership indicator functions for the sets D(7) and D*(F), respectively;

e.5., [(F) = 1 iff deD(7). Because By( ) = J S3(7)d7 by definition, it follows from Eq. (7)
that

[sia= [sie  sxal  aD@oDG) | (®)

and that

/ Si(PILFF = / SIARAE focall  deD . ©)

e | e




There are two types of tallies, those that do not require additional random numbers,

(e.g., track-length tallies), and those that may, (e.g., point detector tallies in MCNP). For

the first type, let

Definition 15: Ty(w) = the tally made by total weight w executing event string d.

The tally associated with the nonanalog transport process is

T =Y TuSu) , (10)

deD(7)
and the corresponding tally associated with the analog process is

*(M= Y Tu(SI7) - (11)

deD4(7)
Monte Carlo tallies are proportional to their weight, i.e.,

Tow) = wTy(1) . (12)

With E( ) denoting expectation, the expected value of the tally in the nonanalog process

is

Bt = [ 3 T(sa# . (13)
deX(r)
By Eq. (12) and Defn. 13, this becomes

= [T sz (14)
" &eD
= L1 [ sanume (15)
k.D .
where integration and summation can be interchanged because the integrand and summand

12
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E (1) = YTy / SHPIFF (16)

deD

and hence by Eq. (9),

E (1'*(?)) =E (T"(r"')) . (17)
A similar result can be shown for stochastic tallies. These tallies require additional
random numbers § = (q1,42,...). For this case, let
Definition 16: Ty(w,§) = the tally made by weight w executing event string d when ran-
dom numbers § are used in the tally process.
T(7,7) and f"(?, ¢) have corresponding definitions. Corresponding to Eq. (12), for stochas-
tic tallies the following holds:

] Ty(10,3)dq = w / T(LPd7 - (18)

The proof that E(T'(7,§)) = E(T*(7,7)) is much the same as before:

E(rea)=[ [ I L ()
=/‘§)Un(s.(?).aﬁ] (20)

- / k}p‘%')s,(?) / TH1,§)ded7 (21)

- / gpﬁ)&(?) / TAL, Ddidr @

- ;[ 104 [ upsine (29

These steps follow from the independence of § and d, and by the use of Eq. (18) and
Defn. 16. Similarly,




E(r59) = X[ [ 70, pa| [ e (24)

deD

and hence by Eq.(9), the expected tally is preserved:

E (T (7, zj)) =E (Tﬂ(;-', a)) . (25)
VII. COROLLARY

If each nonanalog technique begins by throwing a random number (the (k + 1)) that
is not used, the event strings are unaffected and hence for this nonanalog technique
Se(Fer1) = Sa(Te) - (26)

Furthermore, substituting this into Eq. (1) yields (for this nonanalog technique)

By(Fi41) = Bd7s) (27)

as the condition for preserving the expected weight executing all event strings. From now
on, the nonanalog techniques will throw away one random number so that Eq. (27) applies.

Application to Integer Splitting

Definitio. - Splitting j-for-1 on an independently sampled track means:
1. Replacing 1 parent track (of weight 1) by j tracks that are identical to the parent
track except that their weights are w/j.
2. The split particles will be followed exactly the same as the parent particle would have
been followed. That is, if (in the absence of the split) thepuent track ptoduoes a




total weight Wy(7) executing event string d when the track’s subsequent random walk

is sampled using 7, then the i** split track will produce

Wia(F) = Wj‘” = Tyeomd (28)

total weight executing event string d when the i*h track’s subsequent random walk is
sampled using 7.

Because the random walk for parent particle track G is being sampled independently
of all other particle tracks, all other tracks will be unaffected by a split of track G. Thus
their distributions of random walks will be identical, independent of whether track G is
split. Thus if the j split tracks have the same expected weight executing all event strings
as track G, then the expected weight executing all event strings in the entire random walk
will be preserved as required.

The expected total weight executing event string d in the split case is

E [Z Wu(m] =Y EWul@)=3 / Wig(7i)dF,
=]

t=m] t=]
SN

Note that the last term is the expected weight executing event string d for the parent
track so that the j split tracks have the same expected weight exscuting all event strings
38 track G. This completes the proof of unbiasedness by Eq. (27) of the corollary.

Note that although the splitting game has required that the split tracks have the same
distribution of random walks ss the parent track has, the distribution of random walks of
the split tracks can be changed in subsequent nonanalog games. Thus there is no loes of
generality in defining splitting in the above manner.

(29)
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VIII. CONCLUSION
This paper provides theoreticai justification for arbitrary combinations of nonanalog
Monte Carlo techniques. |
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FIGURE CAPTIONS

Figure 1: Specifications for Demon’s Rule Changes.
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